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As a tubularized organ in the distal portion of the urinary tract, 
the urethra can often develop strictures due to congenital defects (e.g. 
hypospadias), injury, and infections. In particular, urethral stricture 
is a common urological problem in men. Urethral strictures thus 
present a significant economic impact and burden, because they 
are relatively frequent and repeated surgical intervention is often 
needed. The main causes of urethral stricture are trauma to the 
urethra, gonorrheal infection and idiopathic inflammatory diseases. 
Trauma, such as straddle injuries, pelvic bone fracture and iatrogenic 
injures (e.g. urinary catheterization or other instrumentation and 
complications due to irradiation for prostate cancer) can result 
in strictures of the anterior and/or posterior segments of urethra. 
Urethral stricture often results in scar tissue formation and poor 
blood supply in or around the urethra, which leads to fibrosis and 
changes in collagen deposition, or in the ratio of smooth muscle to 
extracellular matrix in the underlying tissue. Strictures can block the 
flow of urine and as a result, they cause a high incidence of associated 
complications. These complications include acute urinary retention, 
irritation on voiding, recurrent urinary tract infections, bladder or 
urethral stones, hydronephrosis, and renal failure. 

Surgical treatments for urethral stricture depend upon the length, 
location and degree of scar tissue associated with the stricture. 
Although many different reconstructive procedures have been used, 
they are most applicable to strictures less than 3 cm in length in 
which the stricture can be removed and the two ends of the urethra 
reconnected. It is a big challenge to treatment of severe, long urethral 
strictures. When the stricture is longer, urethral repair requires fresh 
autologous tissue, such as foreskin or oral mucosa, to replace the 
excised segment (substitution procedures). However, fresh tissues for 
substitution are not always available, and if the urethral stricture is 
too long, even this type of repair is not possible. Tissue-engineered 
tubular urethral tissues are an alternative for replacement of lost or 
deficient urethral tissues with functionally equivalent ones, and may 
improve the outcome of reconstructive surgery for urethral strictures 
[1-6].  

Two types of urethral tissue engineering technologies are often 
used: non-cell seeded or cell free and seeded tissue engineered 
urethra [2,7-10]. The non-cell seeded technology is suitable for 
urethra repair via onlay patch or for replacement of short segment 
urethra [11]. Cell seeded technology with autologous cells seeded on 
biodegradable scaffolds achieves better outcomes in longer segment 
urethra repair [4,12], compared to non-seeded scaffolds in urethral 
tissue regeneration. A convenient cell source and optimal biomaterial 
scaffold are both critical for urethra tissue engineering.  Currently, 
autologous bladder cells or oral mucosa cells [13] obtained from tissue 
biopsy are most commonly used for urethral tissue engineering. In 
patients with urethral stricture, however, it might be difficult to insert 
an endoscope into the urethra to obtain adequate bladder cells via 
tissue biopsy. Additionally, even if an endoscopy can be performed, 
the tissue biopsy procedure itself may lead to donor-site morbidity. 
Furthermore, it might not be possible to harvest healthy cells in 
certain patients who have infections in the urethra, bladder or even 
the gums or other oral tissues, as this poses a high risk of bacterial 
or fungal contamination of the biopsy sample. In addition, despite 
reports of successful isolation of autologous urothelial cells from 
urine or bladder washes for use in urological tissue engineering, the 
success rate of cultures of these cells is low (55%), and they also have 
limited expansion capability in culture[14-15]. Importantly, while an 
immortalized urothelial cell line may generate a large amount of cells, 

these cells have limited clinical applications, since immortalized cells 
carry the risk of tumor formation in vivo. 

A stem cell source with high self-renewal and multi-potent 
differentiation capacities that can be obtained via a simple and non-
invasive approach would be highly desirable. We recently found that 
a subpopulation of cells isolated from urine possess characteristics 
similar to mesenchymal stem cells (MSCs), i.e. clonogenicity, cell 
growth patterns, expansion capacity, cell surface marker expression 
profiles and multipotent differentiation  capacity [5,16-29]. These 
urine-derived cells are positive for the MSC surface markers CD29, 
CD44, CD54, CD73, CD90, CD105, CD146, and CD166. In addition, 
these urine-derived stem cells also express some embryonic stem 
cell markers, including Oct4, c-Myc and klf4; however, they do not 
express markers associated with hematopoietic stem cells, such as 
CD31, CD34, CD45, CD11b, CD14, CD19 and HLD-DR [30]. We 
have demonstrated that these stem cells derived from urine are 
capable of multipotent differentiation to bone cells, cartilage cells, 
fat cells, and muscle cells [5-18,30-32]. Thus, we have termed these 
cells “urine-derived stem cells” or USCs. USCs can be obtained 
from voided urine or from urine in the upper urinary tract through 
a nephrostomy tube, and they can generate a large number of cells 
from a single clone [18-31]. Additionally, about 57-75% of the USCs 
collected from middle-aged individuals expressed telomerase activity 
(USCs-TA+) and retained long telomere length. USCs-TA+ possessed 
higher proliferative capacities and could be maintained for up to 67 
population doublings, indicating that a single USC can generate more 
cells, up to 267 cells within 14 weeks, compared to 35 PD (235 cells) 
for USCs that do not express telomerase (USCs-TA-). Now that we 
have improved the cell isolation methods used to obtain USCs, five 
to ten USC clones/100 ml urine can be consistently obtained from 
almost every freshly voided urine sample [30]. To prepare a cell-
seeded biomaterial scaffold for use in urological tissue regeneration, 
the cell concentration for seeding must be about 50x106 cells/cm3,33. 
Thus, the number of cells from one 200 ml urine sample can provide 
enough cells to create a cell-seeded scaffold 0.5x2x10cm3 in size. Our 
recent study showed that USCs give rise to functional urothelial cells 
5, 18, 31, 32, SMCs5, 18, 31, 32, and endothelial cells [30]. Induced 
USCs seeded on different biomaterials (small intestine submucosa 
[5], bladder submucosa [34] or bacterial cellulose polymer18) all 
formed urethra structure with urethelial layer and smooth muscle 
layer on the scaffolds in vitro and also remained such a contracture 
after subcutaneously implanted in a rodent animal. 

Taken together, USCs provide a novel cell source for urethra 
reconstruction via tissue engineering technology. Importantly, 
these cells can be collected using a simple, safe, low-cost and non-
invasive procedure. Because of their high proliferation capacity 
and differentiation potential,  USCs are also a viable cell source for 
bladder tissue engineering [5,18] and cell therapy for the treatment 
of stress urinary incontinence [32-35] vesicoureteral reflux, erectile 
dysfunction, renal dysfunction  and other diseases that are suitable 
for stem cell therapy.  
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