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INTRODUCTION

Gliomas account for 80% of primary malignant brain tumors 

[1,2]. Th ey arise from glial cells and they are classifi ed according 

to WHO classifi cation of 2016, according to the presence of IDH1 

mutation in 2 main categories: IDH1 wild type tumor represented 

mostly by grade IV Glioblastoma with very aggressive behavioral 

and poor prognosis – IDH1 mutated tumor that include various 

biological entities, graded according the same classifi cation in grade 

II and III, with diff erent biological behavior and prognosis. Recent 

publications, indeed, further reduce the value of histological grade as 

a prognostic factor. 

Th e introduction of the new classifi cation helps clinicians to better 

stratify patients and to tailor the best treatment according to tumor 

biology. Despite this new advances prognosis remains uncertain, 

particularly in the IDH1 mutated tumors. 

Th e Progression-Free Survival (PFS) time is the duration between 

surgical treatment and clinical radiological recurrence of the disease. 

With a curative intend, surgery is thus oft en performed whatever the 

grade of tumors. However, the infi ltrative nature of gliomas makes it 

diffi  cult to obtain a complete resection at biological level [3]. Th erefore, 

oft en additional treatments are used aft er the surgery to control the 

evolution, such as radiotherapy and chemotherapy. However as 

each of them carry risks of adverse eff ects, adequate treatments and 

adequate time for treatments have to be selected based on tumor’s 

aggressiveness and patient’s characteristics to improve oncological 

outcome and preserving quality of life of patients. 

Th e European Association of Neuro-oncology recently published 

new guidelines for treatment of glioma in respect of the new 

classifi cation, based on several RCT and on the clinical experience. 

Th e main feature driving the decision for treatment are – biology of 

the tumor and – risk group of the patient defi ned evaluating Karnofski 

Performance Status, neurological status and EOR. Th e introduction 

of this new guidelines suggest a substantial shared and homogeneous 

approach in the treatment of such a heterogeneous disease. Th e 

clinical problem is that despite a complex biological classifi cation 

of the lesion and proper post-operative treatment, the clinical 

behavior remains unpredictable, suggesting that the actual molecular 

and clinical knowledge of this pathology is not powerful enough 

to effi  ciently stratify the patient in the clinical setting. Probably, 

one of the key point in this unsatisfying patient stratifi cation using 

molecular features alone is the tumor heterogeneity, that fade away 

if the histological and molecular analysis in performed on small 

samples of tumor. Tumor heterogeneity can indeed be depicted 

with advance imaging study. Several published work suggest that 

radiological features and metabolic imaging, such as aminoacid PET, 

could help to predict, partially independently from biological features 

of the lesion, the aggressiveness of the tumor and clinical behavior 

aft er fi rst line treatment. Th is results, still promising, are still far from 

optimum. 

To better select patients requiring additional therapies and 

avoiding adverse eff ects in patients who don’t need, a better selection 

based on tumor’s aggressiveness and patient’s characteristics is 

mandatory to improve the safety and quality of life of patients. To 

this end, the interest of radiomics-based analyses is highly increasing, 

in particular for brain tumors [4,5]. Th us far, such analysis has been 

performed using the grade of the tumor and the IDH1 status [6] 

However, the grade can sometimes be challenging to assess precisely, 

and behaviors among patients with the same grade or with the same 

IDH1 status can vary dramatically. Th e statistical analysis remained 

also limited on few imaging features without incorporation of 

11C-methionine -PET scans [7] or biopsy information. MET-PET 

scans provide information about metabolic activities in diff erent 

region of the tumor [8]. By using a patient-specifi c method and 

using all clinical genetic and imaging characteristics, our aim was to 

identify radiomic based biomarkers able to stratify on progression 

free survival patients presenting with gliomas.

MATERIALS AND METHODS

Th is retrospective study was approved by the institutional review 

board with patient informed consent and compliance with the Health 

Insurance Portability and Accountability Act. Patients agree to store 

their clinical information and materials in to the Humanitas Bio 

Bank, according to EC protocol 1299 Humanitas Research Hospital; 

each patient signed an informed consent. Humanitas Research 

Hospital Ethical Committee board approved this retrospective study. 

All methods were performed in accordance with relevant guidelines 

and regulations.

Patients

A total of 90 patients submitted to surgery and with a pathological 

diagnosis of lower grade glioma was included. Data were acquired 

and contains information from MRI, histological examination, MET-

PET scan, clinical features and demographic information. All patient 

features are listed on table 1.

Neuroimaging protocol and EOR evaluation

In all patients a preoperative MR imaging was performed on a 
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Philips-Intera-3.0T, and acquired for lesion morphological and 

volumetric assessment. Th e MR protocol included: a) axial three-

dimensional Fluid-Attenuated Inversion-Recovery (3D-FLAIR); b) 

post-gadolinium three-dimensional T1-weighted Fast-Field-Echo 

(FFE); c) DWI and ADC diff usion weighted imaging. Lesion volume 

was computed onto FLAIR volumetric sequences with manual 

segmentation using iPlanCranial soft ware (BrainLabAG-Munich-

Germany) by two investigators (M.R., L.B.). FLAIR hyperintense or 

T1W-gadolinium-enhanced signal abnormalities were included in 

the lesion load for LGGs or HGGs, respectively, and were reported 

in cm3. Patients underwent both an immediate (within 48 h) and a 

3-month postoperative MR scan (volumetric FLAIR and postGdT1-

weighted images) to estimate the EOR. EOR corresponded to the 

percentage of the volume resected with respect to the pre-operative 

volume: (preoperative volume-postoperative volume)/ preoperative 

volume as previously published. Patients were then classifi ed, 

according to EOR in partial (< 95%) or total resection (95-100% of 

EOR).

Metabolic Imaging

Detailed description of metabolic images acquisition was 

previously described by authors [9]. Briefl y, all patient underwent 
11C-METH PET. Th e radiopharmaceutical used was carrier-free 

L-methyl-11C-methionine, synthesized in hospital. A mean activity 

of 300-500 MBq was administered and images were acquired 15 min 

later on a Biograph 6 LSO (Siemens Medical System) or a Discovery 

690 GE PET/CT scanner. Th e acquired images were evaluated 

semiquantitatively. SUV ratio was calculated as the ratio between the 

count rate in Region of Interest (ROI) drawn on the area with the 

highest radiopharaceutical uptake (SUVmax) and a corresponding 

ROI drawn on the contralateral side. MTW was calculated as summed 

volume of voxels delineated on PET images. 

Histological and Molecular Diagnosis

Samples obtained during surgery were analyzed in the 

pathology service of Humanities Research Hospital. IDH1 status 

was determined by immunohistochemistry and in case of negative 

expression by mutational analysis (codon132 of IDH1 gene, by 

DNA extraction -BiOstic FFPR rissue DNA isolation kit - and pyro 

sequencing of 132 codon, Diatech Pharmacogenetics IDH test). 

Codeletion was determined by FISH (probes: Vysis 1p36/1q25 e 

19q13/19p13); ATRX loss, p53 mutation, Ki67 were determined by 

immunohistochemistry. For MGMT methylation status DNA was 

extracted (BiOstic FFPE Tissue DNA Isolation kit) and determined 

by pyrosequencing (Diatech Pharmacogenetics, MGMT plus, 

validated CE/IVD). Integrated diagnosis was used to classify tumors. 

Histological diagnosis revealed and were distributed like this: 43 

grade II and 47 grade III (Figure 1). IDH1 mutation were present in 

56 patients, IDH1 wild type in 25. In 48 cases the co-deletion 1p/19q 

were found. Th e MGMT metilation was found in 16 of the patients. 

For further details, see table 1.

Follow-up and post-operative treatment

All patients included in this study were followed in the post-

operative period with clinical examination and periodic MR according 

to EANO indication [10]. According to the molecular classifi cation 

and the risk group of the single patient, 60 patients received post-

operative treatment (5 chemotherapy alone, 19 radiotherapy alone, 

36 concomitant treatment). 

All patients included in this study were discussed aft er surgery, 

in the neuro-oncology board and those patients who were selected 

for adjuvant treatment received chemotherapy or radiotherapy or 

concomitant treatment according to molecular and clinical features, 

as indicated in the last international guidelines. In particularly we 

defi ned high risk patient > 40 years old, who present neurological 

symptoms aft er surgery and with a partial resection. Chemotherapy 

and radiotherapy protocol are reported in table 1).We defi ned 

progression of disease, according to RANO criteria, by any of the 

following: (1) development of new lesions or increase of enhancement 

(radiological evidence of malignant transformation); (2) a 25% 

increase of the T2 or FLAIR non-enhancing lesion on stable or 

increasing doses of corticosteroids compared with baseline scan or 

best response aft er initiation of therapy, not attributable to radiation 

eff ect or to comorbid events; (3) defi nite clinical deterioration not 

attributable to other causes apart from the tumour, or decrease in 

corticosteroid dose; or (4) failure to return for evaluation because of 

death or deteriorating condition, unless caused by documented non-

related disorders [11].

Table 1: Features of the database of 90 patients. The fi rst part of the table 
contains features that are used for classifi cation and the second part is the 
follow-up section. Grey tinted features are those which are quantitative, the 
others being qualitative. For quantitative values, the mean and the standard 
deviation are given.
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Figure 1: PFS histogram. PFS histogram of the database of 90 patients (in 
months). Plain blue bars represent grade 3 patients and dashed red bars 
represent grade 2 patients. The vertical line represents the threshold of 30 
months. It separates fast (below 30 months) and slow (above 30 months) 
recurrence.
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Outcomes

Recurrences were observed in 20 grade II and 33 grade III. Median 

PFS were 35 months (+/- 12 months) and 23 months (+/- 13 months), 

respectively. For the aim of this work a threshold has been arbitrary 

set at 30 months in order to separate slow progressing tumors from 

fast progressing ones. Th e rational of this threshold was for clinical 

reasons: it is commonly used in the clinical practice to guide eventual 

further treatment at tumor progression (second surgery, fi rst or 

second line chemotherapy or radiotherapy). Our database contains 

47 patients with slow recurrence and 43 patients with fast recurrence. 

Features and heterogeneity criterion 

Patient features are extracted from clinical, histological and 

radiological information. Extracted features from the MET-PET are 

the maximum and the mean of the SUV signal, the Metabolic Tumor 

Volume (MTV) and the Metabolic Tumor Burden (MTB). 

To consider the signal heterogeneity, hotspots on the MET-PET 

scan were recorded by setting a threshold [12] on the signal and 

counting the number of connected component above this threshold. 

In order to account for spatial heterogeneity, a new indicator was 

set up. Th e idea is to count the number of connected components 

when the threshold varies in all the intensity range. Th is was done 

automatically for all the patients, by registrating the MET-PET scan 

on an atlas of a brain [13], focusing on the MET-PET signal inside 

the brain (Figure 2, left ), setting the range of possible thresholds, 

and then calculating the number of connected components when 

the threshold varies. Th e minimal volume to detect a connected 

component was arbitrarily set to a cube of 3 voxel-long edge, to 

account for the noise on the image. For each patient, it gives a curve of 

the evolution of the number of spots, with respect to the threshold on 

the intensity. Th e given curves were integrated, in order to obtain an 

indicator: bigger the integral is, the more diff erent spots there are in 

the tumor, and the more heterogeneous is the glioma. Other markers 

of heterogeneity were tried, such as the maximum of the calculated 

curve, or characteristic lengths calculated geometrically, but our new 

indicator is the most correlated to PFS (see Figure 3).

Feature selection

Our database contains more than 20 features for each patient, 

and these features are qualitative (histology, expression of genes) or 

quantitative (tumor volume, MET-PET information). In order to 

use classifi er methods, one needs to focus only on the features which 

appear to be the most correlated to the PFS and the recurrence to 

the treatment. In order to fi gure out which features are the most 

relevant we use random forests technique [14]. Th eir advantage is to 

make appear the most important features of the data. Th e very few 

problems of missing data for histomolecular diagnosis was solved 

by imputing a constant distinct value instead. To further explore the 

ability of the method to classify patient and to evaluate the possibility 

to adopt the method as a pre-operative tool, we apply the same 

algorithm at the same cohort of patients without taking in to account 

the data available aft er surgery, such as Extent of Resection (EOR), 

histological diagnosis and grade, molecular features. 

Factorial analysis of mixed data

In order to apply classifi cation methods to the database, the 

reduction of the dimension of the space of features is necessary. 

Focusing on the important features previously obtained is a fi rst 

step which has to be pushed forward. Th e idea is to use Principal 

Component Analysis (PCA) and to project the original vectors on a 

well suited subspace. But PCA cannot be applied directly here because 

our database deals with qualitative and quantitative features (see 

Table 1). Th e idea is to use multivariate analysis of mixed data [15], in 

which PCA (for quantitative features) and Multiple Correspondence 

Analysis (MCA) (for qualitative ones) are combined. Th e data is 

preprocessed, and generalized singular value decomposition is then 

applied. Th is method also has the advantage of providing a new space 

of coordinates that are orthogonal to each other. Note that it can be 

useful in some classifi cation methods to have non correlated variables 

(Bayes methods for example).

Machine learning methods and statistical analysis

Diff erent classifi cation methods were compared by using k -fold-

cross-validation (with k = 10) [16]. Note that leave-one-out method 

Figure 2: Heterogeneity indicator computation. Left: Registration of an 
atlas of a brain [14] to the MET-PET signal. Right: Two different behaviors of 
grade III tumors are compared. On the left column, the reconstructed MET-
PET signal obtained with three different thresholds shows that there are one, 
two and then three different hotspots when the threshold grows (10, 40 and 
60% of SUVmax). On the right column, the tumor is much more homogeneous, 
and the number of spots ranges from 1 to 2. The curves above (with 50 steps 
of SUVmax rate) give the total evolution of the number of spots when the 
threshold variates, and the integral of the left curve is bigger than the right 
one: the calculated indicator reports tumor heterogeneity on the MET-PET 
signal. PFS of left patient is under 30 months (9 months) whereas right patient 
has a slow recurrence (more than 33.6 months). It suggests that this indicator 
may impact the PFS classifi cation, which is confi rmed in the following section.

Figure 3: Correlated features to PFS. Scores of most important features 
regarding random forest classifi cation of patients according to the PFS. Non 
represented features have a score lower than 0.01.
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has also been tried and gives similar results. Th e following algorithms 

were compared: K-Nearest Neighbours (KNN), Naive Bayes Classifi er, 

Logistic Regression, Random Forest, Multilayer Perceptron (MLP) 

and Support Vector Machines (SVM) [14]. Th e Python library Scikit-

learn was used to implement these methods [17].

RESULTS

Feature selection

Feature selection by using random forests gives the histogram on 

fi gure 3. It shows a score of each feature regarding its usefulness for 

the stratifi cation of our population of patients. Only the most relevant 

features are represented here and are kept in the database. Factorial 

analysis of mixed data is used to reduce the dimension of the space of 

characteristics. Machine learning methods are applied to the resulting 

subspace.

Machine learning analysis

Th e table 2 shows that all methods give pretty similar results, 

around 77 % of good classifi cation. Interestingly, despite its simplicity, 

the k-nearest neighbours method minimizes the number of bad 

classifi cations (79% of good estimation), with a short computation 

time. On table 3, the table shows the number of well-predicted 

PFS in both categories. On fi gure 4, ROC (Receiver Operating 

Characteristic) curve [18] associated to the best classifi er is plotted. 

Th e method applied without considering post-operative features (no 

histological diagnosis or grade, no IDH1 mutation) showed around 

68% of good classifi cation, and 70% by using Multilayer Perceptron 

method, as shown in table 4.

Classifi cation comparison

On fi gure 5 panel A, three Kaplan-Meier curves [19] are 

compared. Both curves in blue dashed-line correspond to the survival 

curves of patients with grade II gliomas, and those with grade III 

gliomas. Red line curves are those obtained by dividing the same 

cohort of patients in two groups by using our classifi er. Dotted lines 

represent IDH1 mutated and IDH1 wild type patients. Note that only 

82 patients are classifi ed by IDH1 as this information is missing for 

8 patients. Our classifi er separates the cohort even more signifi cantly 

than the other ones. More precisely, log-rank statistic [20] of the 

grade classifi cation and of the IDH1 mutation classifi cation is much 

smaller than the one of the red line curves (X2_IDH1 = 7.8, X2_grade 

= 11.6 and X2_ML = 39.9). Cox regression [21] has also been used 

to estimate Hazard Ratio (HR) in both cases. With our classifi cation, 

HR = 5.59 (confi dence interval 95%: 3.22-9.17), which means that 

the risk of recurrence at a given time t is on average 5.59 bigger for 

patients classifi ed with fast recurrence than for those classifi ed with 

slow recurrence. Classifi cation by grade and by IDH1 mutation give 

smaller HR of 2.59 (CI 95%: 1.47-4.76) and 2.04 (CI 95%: 1.18-3.57) 

respectively. 

Th e performance of our classifi er were also compared white the 

classifi cation of IDH1 and histological grade combined, as reported 

in fi gure 5 panel B. In B1 case, only grade II mutated and grade III 

wd patients are involved: our classifi er and IDH1/grade combination 

give the exact same stratifi cation, with a HR of 6.08 (CI 95%: 2.69-

13.70). In B2 case, grade II wd and grade III mutated patients are 

kept which shows a much better stratifi cation with our method (HR 

of 5.09 (CI 95%: 2.27-11.56) with ML, HR of 1.22 (0.38-1.73) with 

IDH1/grade separation).

Th e same workfl ow applied only to data acquired before surgery 

gives the resulting Kaplan-Meier curves on fi gure 5 panel C. Th e 

stratifi cation of our classifi er show a similar accuracy in patient 

stratifi cation of the stratifi cation according to grade and IDH1 

mutation. In this case, HR is equal to 3.79 (CI 95%: 2.02-6.07), which 

is still bigger than HR of grade and IDH1 status.

DISCUSSION

Feature selection shows that, as expected, the age of the patient, 

the volume and the grade of the tumor are strongly correlated to PFS. 

IDH1 status (mutated or wild-type) and codeletion are supposed to 

be strongly linked to the aggressiveness of the tumor. Th e score of 

IDH1 status and codeletion is rather weak in our cohort. Missing 

information (for 8 and 16 patients respectively) may explain this 

weak score, as well as the fact that genomic information are local 

and may be less precise than MRI and PET-scans data which are 

global. Interestingly, the most correlated features are those measured 

on the MET-PET scan: SUV information, MTB and our indicator 

of heterogeneity are strongly linked to the prognosis of the patient. 

Actually, if active cells are heterogeneously spread out in the tumor, 

the surgery and the treatment may be less eff ective. 

Th e percentage of good classifi cations is satisfactory, given that 

we only focus on biological features of the tumor and data acquired 

before the surgery and the treatment, and no longitudinal information 

Table 2: Six machine learning algorithms are compared by using k-fold cross 
validation (k = 10). The dataset is split into k folds. For each method, we run 
k different learning experiments with one of the fold as the testing set and the 
other folds as the training set. The fi nal error of the method is the mean of the 
errors of the k learning experiments. The same splitting was made for each 
method to ensure a fair comparison.

Method KNN NaïveBayes Logistic 
Reg

Random 
Forest MLP SVM

Error 0.211 0.233 0.244 0.267 0.244 0.233

Table 3: Classifi cation by using k nearest neighbours method is the one that 
minimizes the number of misclassifi cations.

Real PFS PFS Prediction Fast recurrence Slow recurrence

Fast recurrence 33 9

Slow recurrence 10 38

Figure 4: ROC curve. ROC curve associated to the best classifi er, k nearest 
neighbours method. The area beyond the curve being above 0.8, the 
classifi er is effi cient.
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B1. B2.

Figure 5: Kaplan Meier curves. A: Kaplan Meier curves for three different classifi cations: classifi ed by low and high grade (blue dashed line), by IDH1 status 
(green dotted line, on 102 patients only) and by our best classifi er (red solid line). B: Same Kaplan Meier curves but this time grade and IDH1 are combined: B1 
curves focus only on grade II mutated and grade III wd patients, and B2 curves focus on grade II wd and grade III mutated patients. C: Same method, but only 
with data acquired before surgery (no grade, IDH1 and any biopsy or surgery information). Crosses represent patients with tumor which hasn’t recurred yet.

has been used. Th e results are worse (74% of good classifi cation) 

when the heterogeneity marker on MET-PET scans is not used, which 

suggests once again the relevance of this indicator. KNN method is 

the most effi  cient: this may be explained by the fact that there are 

many diff erent clusters of patients that behave similarly, and other 

algorithms have more diffi  culties to catch these behaviors. Our 

algorithm stratifi es patients more effi  ciently than what is currently 

used, such as grade, IDH1, and even the combination of the two, as 

shown by Hazard Ratio computation. In detail, as reported in fi gure 5 

panel B1 , our classifi er applied on grade II mutated and grade III wild 

type tumors gives the exact same stratifi cation than what is obtained 

by separating grade II mutated and grade III wild type. But, as one 

can see in panel B2, our classifi er stratifi es much more effi  ciently 

grade II wd and grade III mutated patients, compared to classifi cation 

by grade and IDH1 status. It is thus this population on which our 

method brings relevant information. Detecting fast recurrence more 

accurately can improve the follow-up of high-risk patients and help 

in type and timing of adjuvant treatment.

Th e same method applied without taking in account biological 

features of the tumor and EOR, showed a lower, but still satisfying 

accuracy in stratifying patients. Th e comparison of the method with 

the stratifi cation according to biological features showed in fact 

similar PFS curves. For this reason, the method could be also further 

developed to be applied as a pre-operative tool to help clinicians in 

therapeutic decision and timing for surgery.

To summarize, the paper presents a method (Figure 6) combining 

preprocessing of the data, development of a novel heterogeneity 

marker that is computed automatically, and comparison of machine 

learning techniques in order to classify patients regarding their PFS. 

Combining the features extracted from diff erent imaging modalities 

is a challenge that machine learning methods can overcome. In 

particular, it has shown that MET-PET scans features contain 

information correlated to the risk of recurrence, as well as our 

indicator of heterogeneity. Our method constitutes a proof of concept 

of a tool which could have a deep impact on the clinical evaluation of 

the risk of recurrence of gliomas when MET-PET imaging is available. 

Even if this availability of MET-PET imaging is quite limited, such 

method also works with any kind of modalities or clinical imaging, 

such as spectroscopy or diff usion. In particular, our indicator of 

heterogeneity can be computed on any images containing non 

homogeneous texture. Of course, such method needs to be validated 

on a bigger database, but the fi rst results are promising.
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Figure 5: Workfl ow of the article. Description of the workfl ow used in the 
article. Right side explains the extraction of the indicator of heterogeneity 
from MET-PET scans. Left side shows the different steps from the database 
to the classifi cation: feature selection, factorial analysis of mixed data and 
machine learning algorithms.
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