
Research Article

The production of  Bio-energy and its 
properties of  Transport in the Living 
Systems - 
Pang Xiao Feng*
Institutes of Physical electron and Life Science and Technology, University of Electronic Science and 
Technology of Chengdu 610054, China
*Address for Correspondence: Pang xiao feng, Institutes of Physical electron and Life Science and 
Technology, University of Electronic Science and Technology of Chengdu 610054, China, E-mail: 

Submitted: 23 October 2017; Approved: 06 November 2017; Published: 09 November 2017

Cite this article: Feng PX. The production of Bio-energy and its properties of Transport in the Living Systems. Sci 
J Biomed Eng Biomed Sci. 2017;1(1): 030-052.

Copyright: © 2017 Feng PX. This is an open access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Scientifi c Journal of
Biomedical Engineering & Biomedical Science



Scientifi c Journal of Biomedical Engineering & Biomedical Science

SCIRES Literature - Volume 1 Issue 1 - www.scireslit.com Page -031

The Phosphorylation and De - Phosphorylation Reactions 
in the cell and the features of energy released in hydrolysis 
of ATP molecules

As it is known, Kal’kar fi rst proposedthe idea of aerobic 

phosphorylation, which is carried out by the phosphorylationcoupled 

to the respiration. Belitser studied in detail the stoichometric ratios 

between the conjugated bound phosphate and the absorption of 

oxygen and gave further the ratio of the number of ionorganic 

phosphate molecules to the number of oxygen atoms absorbed 

during the respiration, which is not less than two. He thought also 

that the transfer of electrons from the substrate to the oxygen is a 

possible source of energy for the formation of two or more ATP 

molecules per atom of absorbed oxygen. Th erefore Belitser and 

Kal’kar’s research results are foundations establishing modern theory 

of oxidative phosphorylation of ATP molecules in the cell [1-3]. In 

such a case we must know clearly the mechanism and properties 

of the oxidation process, which involves the transfer of hydrogen 

atoms from the oxdised molecule to another molecule, in while there 

are always protons present in water and in the aqueous medium of 

the cell, thus we may only consider the transfer of electrons in this 

process. Th e necessary number of protons to form hydrogen atoms 

is taken from the aqueous medium. Th e oxidation reaction is usually 

proceded inside the cell under the action of special enzymes, in which 

two electrons are transferred from the food substance to some kind 

of initial acceptor, another enzymes transfer them further along 

the electron transfer chain to the second acceptor etc. Th us a water 

molecule is formed in which each oxygen atom requires two electrons 

and two protons. Th e main initial acceptors of electrons in cells  are 

the oxidised forms NAD+ and NADP+ of NAD (nicotine amide 

adenine dinucleotide or pyridine nucleotide with two phosphate 

groups) molecules and NADP(nicotine amide adenine nucleotide 

phosphate or pyridine nucleotide with three phosphate groups) as 

well as FAD (fl avin adenine dinucleotide or fl avoquinone) and FMN 

(fl avin mononucleotide).Th e above oxidised forms of these molecules 

servefor primary acceptors of electrons and hydrogen atoms through 

attaching two hydrogen atoms [3], which is expressed by

  HHNADPeHNADP 22
Where, NADP+ molecule becomes the reduced molecule NADP 

H. Th e NAD+ molecule has also the same active center as the NADP+ 

molecule; it can be converted to the reduced molecule NAD. H under 

combining with two atoms of hydrogen according to the reaction [3]:

  HNADPeHNAD 22
Th e NAD+ and NADP+ are the enzymes, which can perform the 

reaction of dehydrogenation on compounds containing the group of 

atoms through removing two hydrogen atoms.

In the presence of enzymes, such as pyridine-dependent 

hydrogenases and with the participation NAD+ and NADP+  

molecules two hydrogen atoms, including two protons and twoo 

electrons, are removed from this group of atoms. One proton and two 

electrons combine with the NAD+ or NADP+ molecule converting 

them to the reduced forms NADP H or NAD H and the second 

proton is released. Th is mechanism can be also used to oxidise lactic 

acid (lactate) with the formation of pyruvic acid (pyruvate) and 

NAD H, in which the reduced molecules NADP H and NAD H 

serve as electron donors (reducing agents) in other reactions. Th ey 

are involved in a large number of biosynthetic processes, such as in 

the synthesis of fatty acids and cholesterol. Th erefore, the molecule 

NAD • H can serve as an electron donor in the process of oxidative 

phosphorylation, then the phosphorylation r eaction is of [3]
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Where, ADP is called  the adenosine diphosphate. Th e abbreviated 

form of this reaction can be written as

2 0iADP P ATP H  

Th us three ATP molecules are formed in the reaction, in which 

the synthesis of ATP molecule are carried out through the transfer 

of two electrons from the NAD • H molecule along the electron 

transport chain to the oxygen molecule in the mitochondria. In this 

way the energy of each electron is reduced by 1.14 eV. Th e reaction 

is called the phosphorylation of ADP molecules. However, an ATP 

molecule can reacts with water in an aqueous medium, which results 

in the energy release of about 0.43eV under normal physiological 

conditions by virtue of some special enzymes. Th e reaction can be 

represented by

4 3 2
2 4 0.43ATP H O ADP HPO H eV       

,

Its abbreviated form is of
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2 iATP H O ADP P  

In this process ATP molecules are transformed as ADP molecules 

and the bio-energy of about 0.43eV is also released. Th en it is referred 

to as de-phosphorylation reaction of ATP molecules. We know from 

the above representations that an increase in free energy G in 

reaction and its decrease in reaction depend on their temperatures, 

concentrations of the ions Mg2+ and Ca2+ and on the pH value of 

the medium. Under the standard conditions 0G = 0.32 eV (~7.3 

kcal/mole). If the appropriate corrections are made taking into 

consideration the physiological pH values and the concentration 

of Mg2+ and Ca2* inside the cell as well as the normal values for the 

concentrations of ATP and ADP molecules and inorganic phosphate 

in the cytoplasm we can obtain a value of ~ 0.54 eV (~12.5 kcal/mole) 

for the free energy in the hydrolysis of ATP molecu. Hence the free 

energy for the hydrolysis of ATP molecules is not constant. But it is 

impossibly the same at diff erent sites of the same cell if these sites 

have diff erent concentrations of ATP, ADP, P
i
, Mg2+ and Ca2+. 

On the other hand, cells contain a number of phosphorylated 

compounds the hydrolysis of which in the cytoplasm is associated 

with the release of free energy. Th en the values for the standard free 

energy of hydrolysis for some of these compounds are also diff erent. 

Th e enzymes carrying out the above synthesis of ATP molecules from 

ADP molecules and inorganic phosphate in the coupling membranes 

of mitochondria are the same as in the cytoplasmic membranes of 

bacteria, which are mainly composed of F1 and F0, which are joined 

to each other by the small proteins F
5 
and F

6 
. Th ese proteins form the 

F1- F0 complex or the enzyme ATP - ase, in which F1 is composed of 

fi ve protein subunits and has the shape of a sphere with a diameter of 

about 9nm which projects above the surface of the membrane in the 

form of a protuberance. In the coupling membrane of mitochondria 

and the cytoplasmic membrane of bacteria the complex F1- F0 is 

positioned so that the enzyme F1 is on the inside of the membrane 

[1-3]. Th e enzyme F0 can extend from one side of the membrane 

to the other and has a channel which lets protons through. When 

two protons pass through the complex F1 - F0 in the coupling 

mitochondrial membrane one ATP molecule is synthesized inside the 

matrix from an ADP molecule and inorganic phosphate. Th is reaction 

is reversible. Under certain condition the enzyme transports protons 

from the matrix to the outside using the energy of dissociation of ATP 

molecules, which may be observed in a solution containing isolated 

molecules of enzyme F1 and ATP. Th e largest two proteins in F1, 

which is composed of fi veprotein molecules, take part in the synthesis 

and dissociation of ATP molecules, the other three are apparently 

inhibitors controlling these reactions. Aft er removing enzyme F1 

molecules from mitochondria the remaining F0 enzymes increase 

greatly the permeability of protons in the coupling membranes, 

which confi rms that the enzyme F0 has really a channel for the 

passage of protons which is constructed by the enzyme F1. However, 

the complete mechanism for the synthesis of ATP molecules by the 

enzyme ATP - ase is still not clearly known up to now.

The Physical and Biological Foundations of Construction 
of New Theory

As it is known, many biological processes, such as muscle 

contraction, DNA reduplication, neuroelectric pulse transfer on 

the neurolemma and work of calcium pump and sodium pump, 

and so on, are associated with bioenergy transport through protein 

molecules, where the energy is released by the hydrolysis of Adenosine 

Triphosphate (ATP) in the living systems. Th us there here are always 

a biological process of energy transport from production place to 

absorption place in the living systems. In general, the bioenergy 

transport is carried out by virtue of protein molecules. Th erefore, 

the study of the bioenergy transport along protein molecules is a 

very interesting subject in biology and has important signifi cance in 

life science. However, understanding the mechanism of bioenergy 

transport in biomacromolecular systems has been a long-standing 

problem that remains of great interest today. As an alternative 

to electronic mechanisms [1], one can assume that the energy is 

stored as vibrational energy in the C = 0 stretching mode (amide-I) 

of a protein molecular chain of polypeptide. Following Davydov’s 

idea [2], ones take into account the coupling between the amide-I 

vibrarional quantum (exciton ) and the acoustic phonon (molecular 

displacements) in the amino acid residues; Th rough the coupling, 

nonlinear interaction appears in the motion of the vibrartional 

quanta, which could lead to a self-trapped state of the vibrational 

quantum.Th e latter plus the deformational amino acid lattice together 

can travel over macroscopic distances along the molecular chains, 

retaining the wave shape, energy, momentum and other properties 

of the quasiparticle. In this way, the bioenergy can be transported as 

a localized “wave packet” or soliton.Th is is just the Davydov’s model 

of bioenergy transport in proteins, which was proposed in the 1970s 

[2,3]. Davydov model of bioenergy transport work at   helical 

proteins as shown in fi gure 1. 

Following Davydov idea [3], the Hamiltonian describing such 

system has in the form of
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where 0 = 0.205ev is the amide-I quantum energy, - J is the dipole-

dipole interaction energy between neighbouring sites, )B(B nn
 is the 

creation (annihilation) operator for an amide - I quantum excitation 

(exciton) in the site n, u
n
 is the displacement operator of amino acid 

residues at site n, P
n
 is its conjugate momentum operator, M is the 

mass of an amino acid molecule, w is the elasticity constant of the 

protein molecular chains, and 1 is an nonlinear coupling parameter 

and represents the coupling size of the exciton-phonon interaction. 

Th e wave function of the systems proposed by Davydov is in the form 

of

)t(D2 =
 )t(1)t(| D =

( ) exp [ ( ) ( ) ] 10n n n n n n
n n
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Figure 1: Structure of  helical protein.

annihilation (creation) operator of the phonon with wave vector q, 

 |u|)t( and )t( nnn  and 
 |P||)t( nn 

and  )t(D|a|)t(D)t( 1q1nq   are some undetermined functions 

of time. Obviously, | ( ) ( ) 10D n n
n

t t B   >
ex

 in Eq.(2) is an 

eigenstate of the number operator,  
n

nn BBN̂ , corresponding to 

a single excitation, i.e., 
)t(|N̂ D =

)t(| D >. Th e Davydov soliton 

obtained from Eqs. (1) - (2) in the semiclassical limit and using the 

continuum approximation has the from
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Corresponding to an excitation localized over a scale r
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Is the sound speed in the protein molecular chains, v is the velocity 

of the soliton, r
0
 is the lattice constant. Evidently, the soliton contains 

only one exciton, i.e., N= ˆ( ) ( ) 1D Dt N t   . Th is shows that the 

Davydov soliton is formed through self-trapping of one exciton with 

binding energy E
BD

, 

4
1

23BDE
Jw


  . 

Davydov’s idea yields a compelling picture for the mechanism of 

bioenergy transport in protein molecules and consequently has been 

the subject of a large number of works [3-28]. A lot of issues related 

to the Davydov model, including the foundation and accuracy of the 

theory, the quantum and classical properties and the thermal stability 

and lifetimes of the Davydov soliton have extensively been studied 

by many scientists [7-26]. However, considerable controversy has 

arisen concerning whether the Davydov soliton is suffi  ciently stable 

in the region of biological temperature to provide a viable explanation 

for bio-energy transport. It is out of question that the quantum 

fl uctuations and thermal perturbations are expected to cause the 

Davydov soliton to decay into a delocalized state. Some numerical 

simulations indicated that the Davydov soliton is not stable at the 

biological temperature 300K [7-11,24-26]. Other simulations showed 

that the Davydov soliton is stable at 300K [10-24], but they were based 

on classical equations of motion which are likely to yield unreliable 

estimates for the stability of the soliton [3]. Th e simulations based on 

the ID
2 
> state in Eq. (2) generally show that the stability of the soliton 

decreases with increasing temperatures and that the soliton is not 

suffi  ciently stable in the region of biological temperature. Since the 

dynamical equations used in the simulations are not equivalent to the  

Schrodinger equation, the stability of the soliton obtained by these 

numerical simulations is unavailable or unreliable. Th e simulation [9] 

based on the ID
1
> state in Eq. (3) with the thermal treatment of Davydov 

[3], where the equations of motion are derived from a thermally 

averaged Hamiltonian, yields the confusing result that the stability of 

the soliton is enhanced with increasing temperature, predicting that 

ID
1
> - type soliton is stable in the region of biological temperature. 

Evidently, the conclusion is doubtful because the Davydov procedure 

in which an equation of motion for an average dynamical state from 

an average Hamiltonian, corresponding to the Hamiltonian averaged 
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over a thermal distribution of phonons, is inconsistent with standard 

concepts of quantum-statistical mechanics in which a density matrix 

must be used to describe the system. Th erefore, any exact fully 

quantum- mechanical treatment for the numerical simulation of the 

Davydov soliton does not exist. However, for the thermal equilibrium 

properties of the Davydov soliton, there is a quantum Monte Carlo 

simulation [13]. In the simulation, correlation characteristic of 

solitonlike quasiparticles occur only at low temperatures, about 

T<10k, for widely accepted parameter values. Th is is consistent at a 

qualitative level with the result of Cottingham et al. [15,21]. Th e latter 

is a straightforward quantum-mechanical perturbation calculation. 

Th e lifetime of the Davydov soliton obtained by using this method 

is too small (about
12 1310 10 sec  ) to be useful in biological 

processes. Th is indicates clearly that the Davydov solution is not 

a true wave function of the systems. A through study in terms of 

parameter values, diff erent types of disorder, diff erent thermalization 

schemes, diff erent wave functions, and diff erent associated dynamics 

leads to a very complicated picture for the Davydov model [10-12]. 

Th ese results do not completely rule out the Davydov theory; however 

they do not eliminate the possibility of another wave function and a 

more sophisticated Hamiltonian of the system having a soliton with 

longer lifetimes and good thermal stability. Indeed, the question of 

the lifetime of the soliton in protein molecules is twofold. In Langevin 

dynamics, the problem consists of uncontrolled eff ects arising from the 

semiclassical approximation. In quantum treatments, the problem has 

been the lack of an exact wave function for the soliton. Th e exact wave 

function of the fully quantum Davydov model has not been known up 

to now. Diff erent wave functions have been used to describe the states 

of the fully quantum-mechanical systems [4,5]. Although some of 

these wave functions lead to exact quantum states and exact quantum 

dynamics in the J = 0 state, they also share a problem with the original 

Davydov wave function, namely that the degree of approximation 

included when J is not known. Th erefore, it is necessary to reform 

Davydov’s wave function. Scientists had though that the soliton with 

a multiquantum (n2), for example, the coherent state of Brown 

et al. [4], the multiquantum state of Kerr et al. [12] and Schweitzer 

et.al [15,21], the two-quantum state of Cruzeiro-Hansson [18] and 

Forner [22], and so on, would be thermally stable in the region of 

biological temperature and could provide a realistic mechanism for 

bioenergy transport in protein molecules. However, the assumption 

of the standard coherent state is unsuitable or impossible for 

biological protein molecules because there are innumerable particles 

in this state and one could not retain conservation of the number of 

particles of the system. Th e assumption of a multiquantum state (n > 

2) along with a coherent state is also inconsistent with the fact that the 

bioenergy released in ATP hydrolysis can excite only two quanta of 

amide-I vibration. On the other hand, the numerical result shows that 

the soliton of two-quantum state is more stable than that with a one-

quantum state. Cruzeiro - Hansson [18] had thought that Forner’s 

two-quantum state in the semiclassical case was not exact. Th erefore, 

he constructed again a so-called exactly two-quantum state for the 

semiclassical Davydov system as follows [18]:

   
N

+
nm 1 1 n m ex

n,m 1
I t {u },{P }, t B B 0 ,  


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        (5)

Where, B
n
(B

n
+) is the annihilation (creation) operator for an 

amide - I vibration quantum (exciton), u
1
 is the displacement of 

the lattice molecules, P
1
 is its conjugate momentum, and 0

ex is 

the ground state of the exciton. He calculate the average probability 

distribution of the exciton per site, and average displacement 

diff erence per site, and the thermodynamics average of the variable, 

1 1 2 2P B B B B    as a measure of localization of the exciton, 

versus quantity 
2
1/JW   and ( 1/ )Bln K T   in 

the so-called two-quantum state. Eq. (5), where 1 is a nonlinear 

coupling parameter related to the interaction of the exciton-phonon 

in the Davydov model. Th eir energies and stability are compared with 

those of the one-quantum state. From the results of above thermal 

averages, he drew the conclusion that the wave function with a two-

quantum state can lead to more stable soliton solutions than that 

with a one-quantum state, and that the usual Langevin dynamics 

,whereby the thermal lifetime of the Davydov soliton is estimated, 

must be viewed as underestimating the soliton lifetime. However, 

by checking carefully Eq. (5), we can fi nd that the Cruzeiro-Hansson 

wave function [18,24-26] does not represent exactly the two-quantum 

state. To fi nd out how many quanta the state Eq.(1), indeed contains, 

the expectation value of the exciton number operator has to be 

computed. nn n
N B B


 , in this state Eq.(5), and sum over the 

sites, i.e., the exciton numbers N are

   
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Where, we use the relations

2[ . ] , 1n j nj nlnl
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Th erefore, the state Eq. (5), as it is put forward in Ref.[10],deals 

with four excitons (quanta), instead of two excitons, in contradiction 

to the author’s statements. Obviously, it is impossible to create the 

four excitons by the energy released in the ATP hydrolysis (about 0.43 

eV). Th us the author’s wave function is still not relevant to protein 

molecules, and his discussion and conclusion are all unreliable 

and implausible in that paper [10]. It is believed that the physical 

signifi cance of the wave function, Eq. (5), is also unclear, or at 

least is very diffi  cult to understand. As far as the physical meaning 

of Eq. (5) is concerned, it represents only a combinational state of 

single-particle excitation with two quanta created at sites n and m; 

 1 1{ },{ },nm u P t  [18,26] is the probability amplitude of particles 

occurring at the sites n and m simultaneously. In general, n = ≠m and 

nm n m    in accordance with the author’s idea. In such a case it 

is very diffi  cult to imagine the form of the soliton by the mechanism 

of self- trapping of the two quanta under the action of the nonlinear 

exciton-phonon interaction, especially when the diff erence between 

n and m is very large. Hansson has also not explained the physical 

and biological reasons and the meaning for the proposed trial state. 
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Th erefore, we think that the Cruzeiro-Hansson representation is 

still not an exact wave function suitable for protein molecules. Th us, 

the wave function of the systems is still an open problem today. On 

the basis of the work of Cruzeio-Hansson[18], Forner [12,13,22], 

Schweitzer [21] and Pang [24-26] proposed a new model of the 

bioenergy transport in the protein molecules, in which both the 

Hamiltonian and the wave function of the Dovydov model [24] have 

been improved. A new coupling interaction between the acoustic 

and amide - I vibrational modes was added to the original Davydov’s 

Hamiltonian which takes into account relative displacement of the 

neighbouring amino acids resulting from dipole - dipole interaction 

of the neighbouring amide -1 vibrational quanta. Davydov’s wave 

function has been also replaced with a quasi-coherent two-quanta 

state to exhibit the coherent behaviors of collective excitations of 

the excitons and phonons [25,26] which are a feature of the energy 

released in ATP hydrolysis in the systems. Th e equation of motion 

and the properties of the new soliton in the new model are diff erent 

from those in the Davydov model and as a result the soliton lifetime 

and stability are greatly enhanced. It is suggested that this model can 

resolve the controversy on the thermal stability and lifetime of the 

soliton excited in the protein molecules. Th e quantum properties 

of the new soliton will be studied here, but here attention is paid 

also to the problem of its lifetime and thermal stability at biological 

temperature 300K and the lifetime of the new soliton at 300K is 

calculated in detail by using the generally accepted values of the 

parameters appropriate to  -helical protein molecules in terms 

of the quantum perturbation theory developed by Cottingham et al. 

[15], which can take simultaneously into account the quantum and 

thermal eff ects. It can be seen that the lifetime of the new soliton 

at 300K is long enough to provide a viable explanation of the bio-

energy transport in the proteins. Th e plan of this paper is as follows. 

In Section 2, the new model, including the extended Hamiltonian 

and the wave function, is presented. Th e equations of motion and 

the new soliton solution in this model are given in Section 3. In 

Section 4, the properties and thermal stability of the new soliton are 

discussed, and the possibility of the soliton being a suitable candidate 

for the mechanism of bioenergy transport in protein molecules is 

predicted on the basis of results obtained in this paper. In Section 

5, the properties of the new soliton are described and its lifetime is 

calculated by using quantum-mechanical perturbution method. Th e 

detailed discussion of the properties and changes of the lifetimes of 

the soliton for a large range of parameter values is presented. Th e 

conclusions of this investigation are also given in this section.

Establishment of New theory of Bio - energy Transport in 
the Protein Molecules

Results obtained by many scientists over the years indicate that the 

Davydov model, whether it is the wave function or the Hamiltonian, 

is indeed too simple, i.e., it does not denote the elementary properties 

of the collective excitations occurring in protein molecules, and many 

improvements of it have been unsuccessful, as mentioned above. 

What is the source of this problem? It is well known that the Davydov 

theory on bioenergy transport was introduced into protein molecules 

from an exciton-soliton model in generally one-dimensional 

molecular chains [24]. Although the molecular structure of the alpha 

- helix protein is analogous to some molecular crystals, for example 

Acetanilide (ACN) (in fact, both are polypeptides; the alpha-helix 

protein molecule is the structure of three peptide channels, ACN 

is the structure of two peptide channels. If comparing the structure 

of alpha helix protein with ACN, we fi nd that the hydrogen-boned 

peptide channels with the atomic structure along the longitudinal 

direction are the same except for the side group), a lot of properties 

and functions of the protein molecules are completely diff erent 

from that of the latter. Th e protein molecules are both a kinds 

of soft  condensed matter and bio-self-organization with action 

functions, for instance, self-assembling and self-renovating. Th e 

physical concepts of coherence, order, collective eff ects, and mutual 

correlation are very important in bio – self - organization, including 

the protein molecules, when compared with generally molecular 

systems [25,26]. Th erefore, it is worth studying how we can physically 

describe these properties. It is noted that Davydov operation is not 

strictly correct. Th erefore, it is believed that a basic reason for the 

failure of the Davydov model is just that it ignores completely the 

above important properties of the protein molecules. Let us consider 

the Davydov model with the present viewpoint. First, as far as the 

Davydov wave functions, both  21 DandD , are concerned 

[3], they are not true solutions of the protein molecules. On the one 

hand, there is obviously asymmetry in the Davydov wave function 

since the phononic parts is a coherent state, while the excitonic part 

is only an excitation state of a single particle. It is not reasonable that 

the same nonlinear interaction generated by the coupling between the 

excitons and phonons produces diff erent states for the phonon and 

exciton. Th us, Davydov’s wave function should be modifi ed [24-26], 

i.e., the excitonic part in it should also be coherent or quasicoherent 

to represent the coherent feature of collective excitation in protein 

molecules. However, the standard coherent [4] and large - n excitation 

states [12,22] are not appropriate for the protein molecules due to 

the reasons mentioned above. Similarly, Forner’s and Cruzeiro-

Hansson’s two-quantum states do not fulfi ll the above request. In view 

of the above discussion, we proposed the following wave function of 

the protein molecular systems: 

   

   
2

1( )

1 0
2!

exp [ ( ) ( ) ] 0

P

n n n n ex
n n

n n n n ph
n

t t t

I t B t B

i
t P t u

 


 

 

 

   

       
   

   
 

 



               (9)

Where, nB
and nB  are boson creation and annihilation operators 

for the exciton, 0 0ex phand  are the ground states of the 

exciton and phonon, respectively nu and nP are the displacement and 

momentum operators of the amino acid residue at site n respectively. Th e 

             .n n n n nt t t u t and t t P T         
 

are there sets of unknown functions,   is a normalization constant. 

It is assumed hereaft er that 1  for convenience of calculation, 

except when explicitly mentioned. A second problem arises for 

the Davydov Hamiltonian [24-26,28]. Th e Davydov Hamiltonian 

takes into account the resonant or dipole-dipole interaction of the 

neighboring amide - I vibrational quanta in neighboring amino acid 

residues with an electrical moment of about 3.5D, but why do we 

not consider the changes of relative displacement of the neighboring 

amino acid residues arising from this interaction ? It is reasonable to 

add the new interaction term   2 1 1 1n n n n m nu u B B B B  
     
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into the Davydov’s Hamiltonian to represent correlations of the 

collective excitations and collective motions in the protein molecules, 

as mentioned above [24-26]. Although the dipole- dipole interaction 

is small as compared with the energy of the amide-I vibrational 

quantum, the change of relative displacement of neighboring peptide 

groups resulting from this interaction cannot be ignored due to the 

sensitive dependence of dipole-dipole interaction on the distance 

between amino acids in the protein molecules, which is a kind of 

soft  condensed matter and bio-self-organization. Th us, the Davydov 

Hamiltonian is replaced by 

 

 

   

int 0 1 1

2
2

1 1 1 1

2 1 1 1

1[ ( ) ]
2 2

ex ph n n n n n n
n

n
n n n nn

n

n n n n n n n n

H H H H B B J B B B B

P
w u u u u

M

B B u u B B B B







  
 

  

  
  

        

     

   



   (10)

Where 0 = 0.205ev is the energy of the exciton (the C = 0 strechiong 

mode). Th e present nonlinear coupling constants are X
1
 and X

2
. Th ey 

represent the modulations of the on-site energy and resonant (or 

dipole-dipole) interaction energy of excitons caused by the molecules 

displacements, respectively .M is the mass of a amino acid molcule 

and w is the elasticity constant of the protein molecular chains. J is 

the dipole-dipole interaction energy between neighboring sites. Th e 

physical meaning of the other quantities in Eqs.(6) are the same as 

those in the above explanations. Th e Hamiltonian and wave function 

shown in Eqs.(9)-(10) are diff erent from Davydov’s. We add a new 

interaction term,   2 1 1 1 ,n n n n n nn
u u B B B B  

     

into the original Davydov Hamiltonian. Th us the Hamiltonian 

now has better correspondence between the interactions and can 

also represent the features of mutual correlations of the collective 

excitations and of collective motions in the protein molecules. We 

should point out here that the diff erent coupling between the relevant 

modes was also considered by Pang [24-26] and others [27-28] in 

the Hamiltonian of the vibron-soliton model for one-dimensional 

oscillator-lattice and protein systems, respectively, but the wave 

functions of the systems they used are diff erent from Eqs. (9,10). 

Evidently , the present wave function of the exciton in Eq. (9) is not an 

excitation state of a single particle, but rather a coherent state, more 

precisely, a quasicoherent state, because it retain only fore three terms 

of the expansion of a standard coherent state, which can be viewed as 

an eff ective truncation of a standard coherent state. When  n t is 

small, i.e.,   1n t  , Pang represented the wave function of the 

excitons,  P t  , in Eq.(9) as 

     

 
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    (11)

Th e last representation in Eq. (11) is a standard coherent state. 

Th erefore, the state of exciton denoted by the new wave function

 t   has a coherent feature. Th us the wave function in Eq. (11) 

is normalized at 1  . Since   2
1nn

t   is required in the 

calculation, then this condition of   1n t   is naturally satisfi ed 

for the proteins consisting of several hundreds of amino acids. Just so, 

the wave function denoted in Eq.(9) represents exactly the coherent 

features of collective excitations of both the excitons and phonons 

caused by the nonlinear exciton - phonon interaction, this indicates 

that the wave function in Eq.(9) is justifi ed for the proteins. However, 

it is not an eigenstate of the number operator, ˆ
n nn

N B B , 

because of 

   

 

2

ˆ

0 2 2 0

P n n P n n n n
n n n
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  



       
   

      
 

  


      (12)

Th erefore, the P  represents a coherent superposition of the 

excitonic state with two quanta and the ground state of the exciton, 

but it has a determinate numbers of quanta. From the expectation 

value of number operator
N  we fi nd that this state contains the 

number of exciton is 

     
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,           (13)

Namely, it contains only two quanta. Where we utilize Eq. (8) and 

the following relation [24] is:

   2 2
1, 1,[ . ]n m n m nm

n m

t t B B                           (14)
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     

  

   

Th erefore, the new wave function is completely diff erent from 

Davydov’s. Th e latter is an excitation state of a single particle with 

one quantum and an eigenstate of the number operator, but the 

former is not. Th e new state is a quasicoherent state. It contains only 

two excitons, which come from the second and third terms in Eq. 

(9), in which each term contributes only an exciton, but it is not an 

excitation state of two single parties. Hence, as far as the form of 

new wave function in Eq. (9) is concerned, it is either two - quanta 

states proposed by Forner [21] and Cruzeiro-Hansson [10,18] or a 

standard coherent state proposed by Brown et al. [4,2] and Kerr et 

al’s [13] and Schweitzer et al’s [15,21] multiquanta states. Th erefore, 

the wave function, Eq. (9), is new for the protein molecular systems. 

It not only exhibitsthe coherent feature of the collective excitation of 

excitons and phonons caused by the nonlinear interaction generated 

by the exciton-phonon interaction, which , thus, also makes the wave 
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function of the states of the system symmetrical, but it also agrees 

with the fact that the energy released in the ATP hydrolysis (about 

0.43 eV) may only create two amide-I vibrational quanta which, 

thus, can also make the numbers of excitons maintain conservation 

in the Hamiltonian, Eq. (10). Meanwhile, the new wave function has 

another advantage, i.e., the equation of motion of the soliton can 

also be obtained from the Heisenberg equations of the creation and 

annihilation operators in quantum mechanics by using Eqs. (9) and 

(10), but the wave function of the states of the system in other models 

could not, including the one-quanta state [3] and the two-quanta state 

[12,22]. Th erefore, the above Hamitonian and wave function, Eqs. (9) 

and (10), are reasonable and appropriate to the protein molecules.

The Dynamic Equation of Bio - energy Transport

We now derive the equations of motion from Pang’s model. 

First of all, we give the interpretation of )(tn and )(tn in Eq. 

(9). We know that the phonon part of the new wave function in Eq. 

(9) depending on the displacement and momentum operators is 

a coherent state of the normal model of creation and annihilation 

operators. A coherent state for the mode with wave vector q is 

[3,12,24-26]
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          (16)

We can get [12,23] )()( tt   , where )(t  is in Eq. (9), 

and )2sin()(2 0
21 qrMwq  , 0r is the distance between 

neighboring amino acid molecules, and )( 
qq aa is the annihilation 

(creation) operator of the phonon with wave vector q , where
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Utilizing again the above results and the formulas of the 

expectation values of the Heisenberg equations of operators, nu and

nP , in the state )(t .
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                      (18)

We can obtain the equation of motion for the )(tn as 
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From Eq. (19) we see that the presence of two quanta for the 

oscillators increases the driving force on the phonon fi eld by that 

factor, when compared with the Davydov theory.

We now derive the equation of motion for the n . A basic 

assumption in the derivation is that )(t in Eq. (9) is a solution 

of the time-dependent Shrodinger equation [24-26]:
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            (20)

Th e left -hand side of Eq. (16) has [12,23]
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Now left -multiplying the both sides of Eq. (21) by )(t , the 

left -hand side of Eq. (21) can be 
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Similarly, for the right-hand side of Eq. (20) we can have [12,23]
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And utilizing Eqs. (8) and (12) - (14) and the relationships can 

be obtained:
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From Eqs. (20) - (23) we can obtain
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In the continuum approximation we get from Eqs. (19) and (26)
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And

 
 

21 1
2

0

4( , ) ( , ) ( , )
1

x t x t
x t

x w s r

   


 
  

            (28)

Here,
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and 0vvs  . Th e soliton solution of Eq. (27) is thus 
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         (29)

With  
 
 JswP 2

2
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1
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
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  ,    
 
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2
21

1
8

sw
GP 





    (30)

Although forms of the above equations of motion and the 

corresponding solution, Eqs. (27)- (30), are quite similar to that 

of the Davydov soliton, the properties of new soliton have very 

large diff erences from the latter because the parameter values 

in the equation of motion and the solution Eqs. (27) and (29), 

including ,),( PGtR and P , have obvious distinctions 

from that in the Davydov model. A straightforward result of 

Pang’s model is to increase the nonlinear interaction energy 

     2
1212212   DPP GGG  and the 

amplitude of the new soliton and decrease its width due to an 

increase of [24-26] when compared with Davydov soliton [3], 

where JswxD )1( 22
1  , and )1(4 22

1 swxGD 

are the corresponding values in the Davydov mode[3-8]l. Th us the 

localized feature of the new soliton is enhanced. Th erefore its stability 

against the quantum fl uctuation and thermal perturbations increased 

considerably as compared with the Davydov soliton.
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Th e energy of soliton in Pang’s model becomes [24-26]

0
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Th e rest energy of the new soliton is 

WE
Jw
xx

JE s 


 0
2

4
21

00 3
)(8)2(2            (32)

Where, JwxxW 24
21 3])(2[   is the energy of 

deformation of the lattice. Th e eff ective mass of the new soliton is 

   
 

4 2 4
1 2

32 2 2
0

8 9 2 3
2

3 1

  
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
sol ex

x x s s
M m

w J s v
            (33)

We utilize Eqs. (8) and (12) (14) in the above calculations. In such 

a case, the binding energy of the new soliton is 

 4
1 2

2

8
3BP

x x
E

Jw
 

               (34)

BPE  Is larger than that of the Davydov soliton.Th e latter is 

4 2
1 3BDE x Jw  .Th ey have the following relation: 

2 3 4

2 2 2 2

1 1 1 1

8 1 4 6 4BP BD
x x x xE E
x x x x

        
            
         

 (35)

We can estimate that the binding energy of the new soliton is 

about several decades larger than that of the Davydov soliton .Th is is a 

very interesting result. It is helpful to enhance thermal stability of the 

new soliton. Obviously, the increase of the binding energy of the new 

soliton comes from its two - quanta nature and the added interaction. 

  2 1 1 1n n n n n ni
u u B B B B  

    , in the Hamiltonian 

of the systems, Eq. (10). However, we see from Eq. (35) that the 

former plays the main role in the increase of the binding energy and 

the enhancement of thermal stability for the new soliton relative 

to the latter due to 2 1  . Th e  increase of the binding energy 

results in signifi cant changes of properties of the new soliton,which 

are discussed as follows.

In comparing various correlations to this model, it is helpful to 

consider them as a function of a composite coupling parameter like 

that of Pouthier and Spatchek et al[32-35] and Scott[6]again, it is 

convenient to defi ne another composite parameter[3,24-26]that can 

be written as 

 2
1 24 2     P Dw

             (36)

Where,  1 2
D w M  is the band edge for acoustic 

phonons (Debye frequency). If, 4 1P   it is said to be weak. 

Using widely accepted values for the physical parameters for the 

alpha helix protein molecule [2-23],

221.55 10 .J J      
(13 19.5) .w N m 

25(1.17 1.91) 10M kg  
12

1 62 10 .N  
 

12
2 (10 18) 10 .N   

10
0 4.5 10 .r m                   (37)

We can estimate that the coupled constant lies in the region of 

4 0.11 0.273P   , which is not a weakly coupled theory, 

the coupling strength is enhanced as compared with the Davydov 

model, the latter is 4D 0.036 0.045  . Using the notation 

of Bullough et al. [29.30], Teki et al. [31,32], and Pouthier, et al.[33-

35].

2 DJ w                         (38)

In terms of the two composite parameters, 4 P and  , the 

soliton binding energy for Pang’s model can be written by 

 28 4 3BP PE J  
,

 22 1 32 4 3sol ex PM m                   (39)

From the above parameter values, we fi nd 0.08  . Utilizing 

this value, the BPE J  versus 4  relations in Eq. (39) are 

plotted in fi gure 1. 

However,  24 3BP PE J  

for the Davydov model (here

 2' 1 2 4 3 ,sol ex PM m     

2
14 2D Dw    ), then the BDE J versus 4 D

relation is also plotted in fi gure 2. From this fi gure we see that the 

diff erence of soliton binding energies between two models becomes 

larger with increasing 4 [24-26].

Also, we see clearly from Eqs. (28) (32) and (35) that the localized 

feature of the new soliton is enhanced due to increases of the nonlinear 

interaction and of the binding energy of the new soliton resulting from 

the increases of exciton-phonon interaction in Pang’s model. Th us, 

the stability of the soliton against quantum and thermal fl uctuations 

is also enhanced considerately [24-26]. As a matter of fact, the 

nonlinear interaction energy forming the new soliton in Pang’s model 
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is    2 2 32
P 1 2G 8 1 s 3.8 10w J       , and it 

is larger than the linear dispersion energy, 
32J 1.55 10 J 

, i.e., the nonlinear interaction in Pang’s model is so large that 

it can actually cancel or suppress the linear dispersion eff ect in 

the equation of motion ,thus the new soliton is stable in such a 

case according the soliton theory [2,33-35]. On the other hand, 

the nonlinear interaction energy in the Davydov model is only  

 2 2 21
D 1G 4 1 S 1.8 10w J     , and it is about 

three to four times smaller than PG .Th erefore ,the stability of 

the Davydov soliton is weaker as compared with the new soliton. 

Moreover, the binding energy of the new soliton in Pang’s model is 

  214.16 4.3 10BPE J   in Eq. (31), which is somewhat 

larger than the thermal perturbation energy, 214.13 10Bk T J 
, at K300 and about four times larger than the Debye energy, 

211.2 10Dk J     (there D is the Debye frequency). 

Th is shows that transition of the new soliton to a delocalized state 

can be suppressed by the large energy diff erence between the initial 

(solitonic) state and fi nal (delocalized) state, which is very diffi  cult 

to compensate with the energy of the absorbed phonon. Th us ,the 

new soliton is robust against quantum fl uctuations and thermal 

perturbation, therefore it has a large lifetime and good thermal 

stability in the region of biological temperature .In practice, according 

to Schweitzer et al.s studies (i.e the lifetime of the soliton increases as 

p and  Bp KVT 00   increase at a given temperature)[15] and 

the above obtained results, an inference could roughly be drawn that 

the lifetime of the new soliton will increase considerably as compared 

with that of the Davydov soliton due to the increase of p and 0T
because the latter are about three times larger than that of the Davydov 

model. On the other hand, the binding energy of the Davydov soliton

1

4 2 21
BDE 3w J 0.188 10 J    , and it is about 23 

times smaller than that of the new soliton, about 22 times smaller 

than  TKB , and about 6 times smaller than BK , respectively. 

Th erefore, the Davydov soliton is easily destructed by the thermal 

perturbation energy and quantum transition eff ects. Th us it indicates 

that the Davdov soliton has a very small lifetime, and it is unstable 

at the biological temperature 300K.Th is conclusion is consistent at a 

qualitative level with the result s of Wang et al.[13,14] and Cottingham 

et al.[15,21]. One can sum up the diff erences between Pang’s model 

and Davydov’s model, Eqs. (1) - (4), as follows. First, the parameter 

μ
p 
is increased (μ

p
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

 is the nonlinear 

interaction in the Davydov model, resulting from the two - quanta 

nature and the enhancement of the coupling the coeffi  cient (


1
+


2
). For  -helical protein molecules, and using the parameter values 

listed in Eq. (37) the values of the main parameters in Pang’s model 

can be calculated. Th ese values and the corresponding values in the 

Davydov model are simultaneously listed in table 1. From table 1 we 

can see clearly that the new model produces considerable changes 

in the properties of the new soliton, such as large increase of the 

nonlinear interaction, binding energy and amplitude of the soliton, 

and decrease of its width as compared to that of the Davydov soliton. 

Th is indicates that the soliton in Pang’s model is more localized and 

more robust against quantum and the thermal stability has been 

enhanced [2,27,28] which implies an increase in lifetime for the new 

soliton. From Eq. (19) it can also be found that the eff ect of the two 

- quanta nature is larger than that of the added interaction. We can 

therefore refer to the new soliton as quasi-coherent.

In the above studies, the infl uences of quantum and thermal eff ects 

on soliton state, which are expected to cause the soliton to decay into 

delocalized states, we postulate that the model Hamiltonian and the 

wavefunction in Pang’s model together give a complete and realistic 

picture of the interaction properties and allowed states of the protein 

molecules. Th e additional interaction term in the Hamiltonian gives 

better symmetry of interactions. Th e new wavefunction is a reasonable 

choice for the protein molecules because it not only can exhibit the 

coherent features of collective excitations arising from the nonlinear 

interaction between the excitons and phonons, but also retain 

the conservation of number of particles and fulfi l the fact that the 

energy released by the ATP hydrolysis can only excite two quanta. In 

such a case, using a standard calculating method [2,26] and widely 

accepted parameters we can calculate the region encompassed of the 

excitation or the linear extent of the new soliton, 02 / pX r  

, to be greater than the lattice constant r
0,
 i.e., 0rX   as shown 

in table 1. Conversely, we can explicitly calculate the amplitude 

squared of the new soliton using Eq. (29) in its rest frame as 

2 2

0

| ( ) | sec ( )
2

p p x
x h

r

 
  . Th us the probability to fi nd the 

new soliton outside a range of width r
0
 is about 0.10. Th is number can 

be compatible with the continuous approximation since the quasi-

coherent soliton can spread over more than one lattice spacing in 

the system in such a case. Th is proves that assuming the continuous 

approximation used in the calculation is valid. Th erefore we should 

believe that the above calculated results obtained from Pang’s model 

is correct. 

Figure 2: :  Binding energy (EB) of the solitons in our model and the Davydov 
model in units of dipole-dipole interaction energy (J) vs The coupled constant,  
4, relationship.
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The lifetime of the carrier of Bio-Energy transport at 
biological temperature

Partially Diagonalized Form of the Model Hamiltonian: Th e 

lifetime of the soliton in the protein molecules is an centre problem in 

the process of bioenergy transport because the soliton possess certain 

biological meanings and can play an important role in the biological 

process, only if it has enough long lifetimes. Th erefore, to calculate 

the lifetime of the new soliton in Pang’s model has important 

signifi cance. For convenlence of calculation, we here represent the 

wave function of the system in Eq. (9) by [24-26] 

| )t( >=| )t( >| )t( >=U
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Where, we assume n|| 2

i
i  , where n is an integer, denotes 

the number of particle. Th e wave function, Eq.(40), does not only 

exhibit coherent properties, but also agrees with the fact that the 

energy released in the ATP hydrolysis (about 0.43eV) excites only 

two amide-I vibrational quanta, instead of multiquanta (n > 2) [24-

26]. Th erefore, the Hamitonian and wave function of the systems, 

Eqs. (9) - (10), or (40) are reasonable and appropriate to the protein 

molecules. Using the standard transformation in Eq. (16), where, 
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Where,      

0
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1 1 0 2 2( ) 2 sin ;   g ( ) ( 1)
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 (42)

In a semiclassical and continuum approximations, from Eq. (41) 

we can obtain the envelope soliton solution Eq. (29) in Pang’s model, 

we now represent Eq. (29) by the following form [24-26]
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where      
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Th e energy of the new soliton is

E
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Th us we can also fi nd out that 
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Th is treatment yields a localized coherent structure of the 

excitons with size of order 2 r
0
/μ

p
 that propagates with velocity 

v and can transfer energy E
S01

< 02 . Unlike bare excitons that are 

scattered by the interactions with the phonons, this soliton state 

describes a quasi-particle consisting of the two excitons plus a lattice 

deformation and hence a priori includes interaction with the acoustic 

phonons. So the soliton is not scattered and spread by this interaction 

of the vibration of amino acids (lattices), and can maintain its form, 

energy, momentum and other quasiparticle properties moving over 

a macroscopic distance. Th e bell-shaped form of the soliton Eq. (43) 

does not depend on the excitation method. It is self-consistent. Since 

the soliton always move with velocity less than that of longitudinal 

sound in the chain they do not emit phonons, i.e., their kinetic energy 

is not transformed into thermal energy. Th is is one important reason 

for the high stability of the new soliton. In addition the energy of the 

soliton state is below the bottom of the bare exciton bands, the energy 

gap being 3/J4 2
p  for small velocity of propagation. Hence there is 

an energy penalty associated with the destruction with transformation 

from the soliton state to a bare exciton state, i.e, the destruction of the 

soliton state requires simultaneous removal of the lattice distortion. 

We know in general that the transition probability to a lattice state 

without distortion is very small, in general, being negligible for a 

long chain. Considering this it is reasonable to assume that such a 

soliton is stable enough to propagate through the length of a typical 

protein structure. However, the thermal stability of the soliton state 

must be calculated quantitatively. Th e following calculation addresses 

this point explicitly [24-26]. We now diagonalize partially the model 

Hamiltonian in order to calculate the lifetime of the soliton, Eq. (43), 

using the quantum perturbation method  [14]. Since one is interested 

in investigating the case where there is initially a soliton moving with 

a velocity v on the chains, it is convenlent to do the analysis in a frame 

of reference where the soliton is at rest.  We should then consider 

the Hamiltonian in this rest frame of the soliton, H~ -vP, where P 

is the total momentum, and P=
 

q
qqqq )BBaa(q , Where,

0
1 iqnr

q n
n

B e B
N

   . Also, in order to have simple analytical 

Table 1: Comparison of parameters used in the Davydov model and our new model.
Parameters

Models  G (×10-21J) Amplitude of soliton A’ Width of soliton X (×10-

10m)
Binding energy of soliton 

EB (×10-21J)
Our Model 5.94 3.8 1.72 4.95 - 7.8

Davydov
model 1.90 1.18 0.974          14.88 - 0.188
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expressions we make the usual continuum approximation. Th is gives
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Where, )x(   represents now the fi eld operator corresponding 

to B
n
 in the continuum limit (whereas before it only indicated a 

numerical value). Here L = Nr
0
, －π＜kr

0
＜π, and � ≈ (w/M)1/2 

r
0·
|q｜, x = nr

0
. Since the soliton excitation is connected with the 

deformation of intermolecular spacing, it is necessary to pass in 

Eq. (47) to new phonons taking this deformation into account. 

Such a transformation can be realized by means of the following 

transformation of phonon operators [29].

b
q
= ,

N
1ab  ,

N
1a *

qqqqp  
           (48)

Which describe phonons relative to a chain with a particular 

deformation, where b
q
 (b


q ) is the annihilation (creation) operator of 

new phonon. Th e vacuum state for the new phonons is

*
q

~ 1| 0 exp ( ( ) (t))a | 0  ph q q q ph
q

t a
N

  
    

 
        (49)

Which is a coherent phonon state [30], i.e., b
q
| 00~ ph  . Th e 

Hamiltonian 
~
H  can now be rewritten [24-26] as

2
2

0 0 20

*

q

1 2 0

~
2 ( )[ 2 ( ) ] ( )

1  ( )[ ( )] '

1  2[ ( ) 2 ( )]( ) ( ) ( )

L

q q q q q q q

L iqx
q q

H dx x J V x Jr i x
x x

qv b b b b W
N

g q g q b b dxe x x
N

  

  

 

  

 


 
     

 

    

 





 





  (50)

Where, 

2||)(1' qq
q

qv
N

W   
,

  
q

iqx
q

*
q21 e))](q(g2)q(g[

N
1)x(V

            (51)

To describe the deformation corresponding to a soliton in the 

subspace where there is

0
( ) ( ) 1

L
dx x x  

From Eq (45) in such a case. From the above formulae we can 

obtain

V(x) = )r/x(hsecJ2 0p
22

p                (52)

In order to partially diagonalize the Hamiltonian Eq.(50) we 

introduce the following canonical transformation[14,23]

  
j

j
*
jj

j
j A)x(C)x(  ),x(CA)x(

            (53)

Where, 

*

*
1 2

( ) ( )
C ( ) ( ) ,

( ), | ( ) | 1
j j

j lj
j j

C x C x
x C x dx

x x dx C x







  
 

    (54)

Th e operators 

sA  and 


kA  are the creation operators for 

the bound states C
s
(x) and delocalized state C

k
(x), respectively. 

Th e detailed calculation of the partial diagonalization and of 

corresponding C
s
(x) and C

k
(x) are described in Appenix A. Th e 

partially diagonalized Hamiltonian obtained is as follows

' ( )

1 1( )( )(1 )  

1( , , )( )

( , )( )( )

s s s k k k q q q
k q

q q q q q s s
q

q q k k
kk q
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 
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  
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     

   

  

 

 







 




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1/2 2
0 0

0

( ) ( ) sec ( / ) exp[ / 2 ],    
2

p
s pC x h x r i xv Jr

r


 
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2 2
2

0 2
0

2 2
2s p

v
E J J

Jr
 
 

    
 


          (56a)

0 0
2

00 0

tanh( / )
( ) exp[ ],  
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p p

k
p

x r ikr i vx
C x ikx

JrNr ikr

 




 


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     (56b)

with  

2 2
2

0 02
0

2 2 ( )
2k

v
E J J kr

Jr

 

    
 



Where,     
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p
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i k q r ikr
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  (57)

1 2 0
( , ) 2[ ( ) 2 ( )] ( ) ( )

L iqx
k sF k q g q g q dxe C x C x
  

0
1 2 0

0

2 [ ( ) 2 ( )] sec [ ( ) / 2 ]
[ ]2 p

pp

iqr
g q g q h k q r

ikr
  



       
 (58)

Where, q  is determined by V(x) and the condition, ( q －vq) 
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q =( q +qv)
q , which is required to get the factor, (1－ ss AA

),in the H~  in Eq.(55). Th us we fi nd 

1/2

1 2
02

( ) ( ) csc ( / 2 )
(1 ) 2q q p

p q

i M
qv h qr

w s
     
 

 
  

   
   (59)

and  JW p
2

3
2' 

For this q  the |
~
0 ＞

ph
 in Eq.(49) is just the coherent phonon 

state introduced by Davydov. However, the bound state C
s
(x) in 

Eq.(56a), unlike the unbounded state C
k
(x) in Eq.(56b), is self-

consistent with the deformation. Such a self-consistent state of the 

intramolecular excitation and deformation forms a soliton which 

in the intrinsic reference frame is stationary. For the new soliton 

described by the state vector 
21| ( ) | 0 | 0

2! s ex phA     the 

average energy of H~  in Eq.(55) is

2 2
2

0 2
0

4| | 2( 2 )
4 3 p

v
H J J

Jr
       


         (60)

ĂEvidently, the average energy of H~  in the soliton state |＞, 

Eq.(60), is just equal to the above soliton energy E
sol

, or the sum of 

the energy of the bound state in Eq.(56a), E
s
, and the deformation 

energy of the lattice, W’, i.e., | |H   E
sol

=E
s
+W’. Th is is 

an interesting result, which shows clearly that the quasi-coherent 

soliton formed by this mechanism is just a self-trapping state of 

the two excitons plus the corresponding deformation of the amino 

acid lattice. However, it should be noted that |  is not an exact 

eigenstate of H~ owing to the presence of the terms in H~  with 

kA

A
s
 and 


sA A 

-k
.BĀ

Transition Probability and Decay Rate of the New Soliton: We 

now calculate the transition probability and decay rate of the quasi-

coherent soliton arising from the perturbed potential by using the 

fi rst-order quantum perturbation theory developed by Cottingham, 

et al. [14], in which the infl uences of the thermal and quantum 

eff ects on the properties of the soliton can be taken into account 

simultaneously. For the discussion of the decay rate and lifetime of 

the new soliton state it is very convenlent to divide 
~
H  in Eq. (55) 

into H
0
+V

1
+V

2
, where

0 ' ( )s s s k k K q q q
k q

H W E A A E A A vq b b        

*1 ( )( )(1 )q q q q q s s
q

vq b b A A
N

                (61)

1
1 ( , , )( )q q k k

kk q

V F k k q q b b A A
N

 




              (62)

2 1 2

~1 ( ,q)( )( ),  V V Vq q s k s k
kq

V F k b b A A A A
N

  
       (63)

Where, H
0
 describes the relevant quasi-particle excitations in 

the protein. Th is is a soliton together with phonons relative to the 

distorted amino acid lattice. Th e resulting delocalized excitations 

belongs to an exciton-like band with phonons relative to a uniform 

lattice. Th e bottom of the band of the latter is at the energy 3/J4 2
p  

relative to the soliton, in which the topological stability associated 

with removing the lattice distortion is included. We now calculate 

the decay rate of the new soliton along the following lines by using 

Eq. (61) and V
2
 in Eq. (63) and quantum perturbation theory. 

Firstly, we compute a more general formula for the decay rate of 

the soliton containing n quanta in the system in which the three 

terms contained in Eq. (40a) is replaced by (n+1) terms of the 

expression of a coherent state ,    exp 0 .n n n n ex
n

t B t B        
  

Finally we fi nd out the decay rate of the new soliton with two-

quanta.  In such a case H
0
 is chosen such the ground state, |n> has 

energy 
'' sW nE  in the subspace of excitation number equal to 

n, i.e., s s k
k

|  | n nl(A A A )ln ni i k
i

n B B A       . In this 

subspace the eigenstates have the simple form

Ă|n-m,k
1
k

2
…k

m
, {n

q
｝>

1 2

( )1 ( ) | 0 10
( )! !

q

m

n
qn m n m

S k k k ex phq
q

d
A A A A

n m n


       


   (64)

Where,

qqqqq N
1

n
mna

N
1

n
mbd 




(m≤n, n and m are all intgers)              (65)

With, d
q
| 0 n m

ph
 =0. Th e corresponding energy of the systems is

1 1

1

(0) 2
; ... ;{ }

1

(1 ( / ) ) '

( ) ( )

m qn m k k n

m

s k q q
j q

E m n W

n m E E vq n





  

                    (66)

sE is the energy of a bound state with one exciton, kE  is the 

energy of the unbound(delocalized) state with one exciton. When 

m=0 the excitation state is a n-type soliton plus phonons relative to 

the chain with the deformation corresponding to the n-type soliton. 

For m=n the excited states are delocalized and the phonons are 

relative to a chain without any deformation. Furthermore except for 

small k, the delocalized states approximate ordinary excitons. Th us 

the decay of the soliton is just a transition from the initial state with 

the n-type soliton plus the new phonons:

Ă
n

1/2

~( )1| n ( ) | 0 | 0   
( !)n!

nq
q

s ex phq
q

b
A

n


              (67)

With corresponding energy E
s 
{n

q
｝=W+n  

q
qs )vq(E 

n
q
 to the fi nal state with delocalized excitons and the original phonons:

Ă
n( )

| | 0 ( ) | 0
!

nq
q

ph k exq
q

a
k A

n



               (68)
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With corresponding energy E
k
{n

q
}=n ( )k q

q

E vq  

n
q
 caused by the part, V

2
, in the perturbation interaction V. In this 

case, the initial phonon distribution will be taken to be at thermal 

equilibrium. Th e probability of the above transitions in lowest order 

perturbation theory is given by



0

2 0 ( ) 0 0
2

0 0
2

1   
n | exp exp |

iHk | exp exp |

t

t

ph
l

k l

dt dt
W iH t iH t

P V k

t iH t
V n

h








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        
   





 



    (6)

We should calculate the transition probability of the soliton 

resulting from the perturbed potential, (V
1 

+ V
2
), at fi rst-order in 

perturbation theory. Following Cottingham and Schweitzer [14] 

we estimate only the transition from the soliton state to delocalized 

exciton states caused by the potential V
2
, which can satisfactorily be 

treated by means of perturbation theory since the coeffi  cient F~ (k,q) 

defi ned by Eq. (58) is proportional to an integral over the product of 

the localized state and a delocalized state, and therefore is of order 

1/ N . Th e V
1
 term in the Hamiltonian is an interaction between 

the delocalized excitons and the phonons. Th e main eff ect of V
1
 is 

to modify the spectrum of the delocalized excitatons in the weak 

coupling limit (Jμ
p
/ K

B
T

0
<<1, the defi nition of T

0
 is given below). As 

a result the delocalized excitons and phonons will have their energies 

shift ed and also have fi nite lifetimes. Th ese eff ects are ignored in our 

calculation since they are only of second order in V
1
. Th e sum over l in 

Eq. (69) indicates a sum over an initial set of occupation numbers for 

phonons relative to the distorted amino acid lattice with probability 

distribution 
ph

lP , which is taken to be the thermal equilibrium 

distribution for a given temperature T. Since

0
q q

q q q q
q

| , {n } exp{-i(W' nE )
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iH te n
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Where, d
q
=b

q
+ qN

1
n
1

 ,

Using the explicit form for V
2
 and the fact that the sum over 

states｜  }n{ ,k q  contains a complete set of phonons for each 

values of k′, one can rewrite W  as
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  (70)

Where,
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Here, A is a new parameter introduced to describe the rate between 

the new nonlinear interaction term and the one in the Davydov’s 

model. To estimate the lifetime of the soliton we are interested in 

the long-time behavior of  
dt
wd

. By straightforward calculation, the 

average transition probability or decay rate of the soliton is given by
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Where, the thermal average is
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and   Z
ph

= )
TK

1(  ,)]}qv(exp[1(
B

1
q

q
 

Th is rather unusual expression of Γ
n
 occurs because the phonons 

in the fi nal state are related to a diff erent deformation. However, 

the analytical evaluation of ),,( ����   is a critical step in the 

calculation of the decay rate Γ
n
. It is well known that the trace 

contained in ),,( ����   can be approximately calculated by using 

the occupation number states of single-particles and coherent state. 

However the former is both a very tedious calculation, including the 
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summation of infi nite series, and also not rigorous because the state 

of the excited quasiparticles is coherent in Pang’s model. Here we use 

the coherent state to calculate the ),,( ����   as it is described in 

Appendix B. Th e decay rate obtained fi nally is,

2
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Where,
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Th is is just a generally analytical expression for the decay 

rate of the soliton containing n quanta at any temperature within 

lowest order perturbation theory. Note that in the case where a 

phonon with wavevector k in Eq. (75) is absorbed, the delocalized 

excitation produced does not need to have wavevector equal to k. Th e 

wavevector here is only approximately conserved by the sech 2[π (k-

k’) 10 n2/r  ] term. Th is is, of course, a consequence of the breaking 

of the translation symmetry by the deformation. Consequently, we do 

not fi nd the usual energy conservation. Th e terms, R
n 

(t) and )t(n
, occur because the phonons in the initial and fi nal states are defi ned 

relative to diff erent deformations [24-26]. We should point out that the 

approximations made in the above calculation are physically justifi ed 

because the transition and decay of the soliton is mainly determined 

by the energy of the thermal phonons absorbed. Th us the phonons 

with large wavevectors, which fulfi l wavevector conservation, make 

a major contribution to the transition matrix element, while the 

contributions of the phonons with small wavevector, which do not 

fulfi l wavevector conservation, are very small, and can be neglected.  

From Eqs. (74) and (75) we see that the n  and R
n 
(t) and )t(n  

and 1n  mentioned above are all changed by increasing the 

number of quanta, n. Th erefore, the approximation methods used to 

calculate n and related quantities (especially the integral contained 

in n ) should be diff erent for diff erent n. We now calculate the 

explicit formula of the decay rate of the new soliton with two-quanta 

(n = 2) by using Eqs. (74)-(75) in Pang’s model. In such a case we 

can compute explicitly the expressions of this integral and R
2 
(t) and 

)t(2  contained in Eqs.(74)-(75) by means of approximation. As a 

matter of fact, in Eq.(75) at n=2 the functions R
2 
(t) and )t(2  can be 

exactly evaluated in terms of the digamma function and its derivative. 

In the case when the soliton velocity approaches zero and the phonon 

frequency q  is approximated by M/w  |q|r
0
, as it is shown in 

Appendix C. For t  (because we are interested in the long-time 

steady behaviour) the asymptotic forms of R
2
(t) and )t(2  are

]i
2
1578.1)t
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At R
0
＜1 and T

0
＜T and R

0
 T/T

0
＜1 for the protein molecules, 

one can evaluate the integral including in Eq.(74) by using the 

approximation which is shown in Appendix C. Th e result is

0 0
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Where,
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2
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Th e decay rate of the soliton, in such an approximation, can be 

represented, from Eqs. (74) and (80), by
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            (82)

Th is is the fi nal analytical expression for the decay rate of the 

quasi-coherent solition with two-quanta. Evidently, it is diff erent 

from that in the Davydov model [15,21]. To emphasis the diff erence 

of the decay rate between the two models we rewrite down the 

corresponding quantity for the Davydov soliton [15,21] 
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Where,      /TKR B
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Equation (83) can also be found out from Eq. (74) at n = 1 by using 

the Cottingham et al’s approximation.Th e two formulae above, Eqs. 

(82) and (83), are completely diff erent, not only for the parameter’s 

values, but also the factors contained in them. In Eq.(82) the factor, 
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  

01( )' 2 2 2
02( ) ] )

R

kk r J 


  ) in Eq. (82) due to the two-quanta 

nature of the new wavefunction and the additional interaction term 

in the new Hamiltonian. In Eq. (82) the η, R
0
 and T

0
 are not small, 

unlike in the Davydov model. Using Eq. (72) and table 1 we fi nd 

out the values of , R
0
 and To at T = 300K in both models, which 

are listed in table 2. From this table we see that the  , R
o
 and T

o
 

for Pang’s model are about 3 times larger than the corresponding 

values in the Davydov model due to the increases of μ
p
 and of the 

non-linear interaction coeffi  cient G
p
. Th us the approximations used 

in the Davydov model by Cottingham, et.al [14] can not be applied 

in our calculation of lifetime of the new soliton, although we utilized 

the same quantum-perturbation scheme. Hence we can audaciously 

suppose that the lifetimes of the quasi-coherent soliton will greatly 

change.

Discussion for the Lifetime of the New Soliton and Results: 

Th e above expression, Eq. (82), allows us to compute numerically 

the decay rate, 2 , and the lifetimes of the new soliton, τ = 1/ 2 , 

for values of the physical parameters appropriate to α-helical protein 

molecules. Using the parameter values given in Eq. (37), tables 1 

and 2 , v = 0.2 v
0 
and assuming the wavevectors are in the Brillouin 

zone, the values of 2  between 1.54×1010S-1 - 1.89×1010S-1 can be 

obtained. Th is corresponds to the soliton lifetimesτ, of between 

0.53×10-10S  0.65×10-10S at T=300K, or τ/τ
0
=510-630, where τ

0
=r

0
/v

0
 

is the time for travelling one lattice spacing at the speed of sound, 

equal to (M/w)1/2=0.96×10-13S. In this amount of time, the new 

soliton, travelling at two tenths of the speed of sound in the chain, 

would travel several hundreds of amino acid lattice spacings, that is 

several hundred times more than the Davydov soliton for which τ/

τ
0
<10 at 300K [15,21] (i.e., the Davydov soliton traveling at a half of 

the sound speed can cover less than 10 lattice spacing in its lifetime). 
Th e lifetime is suffi  ciently long for the new soliton excitation to be a 

carrier of bio-energy. Th erefore the quasi-coherent soliton is a viable 

mechanism for the bio-energy transport at biological temperature 

in the above range of parameters. ĂAttention is being paid to the 

relationship between the lifetime of the quasi-coherent soliton and 

temperature. Fig.3 shows the relative lifetimes  /τ
0
 of the new soliton 

versus temperature T for a set of widely accepted parameter values 

as shown in Eq. (37). Since one assumes that v＜v
0
, the soliton will 

not travel the length of the chain unless τ/τ
0
 is large compared with 

L/r
0
, where L=Nr

0
 is the typical length of the protein molecular 

chains. Hence for L/r
0
≈100, τ/τ

0
＞500 is a reasonable criterion for 

the soliton to be a possible mechanism of the bio-energy transport 

in protein molecules. Th e lifetime of the quasi-coherent soliton 

shown in Figure 4 decreases rapidly as temperature increases, but 

below T=310K it is still large enough to fulfi ll the criterion. Th us the 

new soliton can play an important roles in biological processes. For 

comparison, log )/( 0 versus the temperature relationships was 

plotted simultaneously for the Davydov soliton and the new soliton 

with a quasi-coherent two-quanta state in Fig.4. Th e temperature-

dependence of log ( 0/  ) of the Davydov soliton is obtained from 

Eq. (83). We fi nd that the diff erences of values of 0/   between the 

two models are very large. Th e value of 0/   of the Davydov soliton 

really is too small, and it can only travel fewer than ten lattice spacings 

in half the speed of sound in the protein chain. Hence it is true that 

the Davydov soliton is ineff ective for biological processes [3-23].

Th e dependency of the soliton lifetime on the other parameters 

can also be studied by using Eq. (82). Parameter values near the above 

accepted values shown in Eq. (37) are chosen. In Pang’s model we 

know from Eq. (82) that the lifetime of the soliton depends mainly on 

the following parameters: coupling constants (χ
1
+χ

2
), M, w, J, phonon 

energy k
, as well as on the composite parameters μ (μ = μ

p
), R

0
 and 

T/T
0
. At a given temperature, τ/τ

0
 increases as μand T

0
 increase. Th e 

dependences of the lifetime τ/τ
0
, at 300K on (χ

1
+χ

2
) and μ are shown 

in Figs.5 and 6, respectively. Since μ is inversely proportional to the 

size of the soliton, and determines the binding energy in the new 

model, it is an important quantity. It is regarded as an independent 

variable. In such a case the other parameters in Eq. (82) adopt the 

values in Eq. (37). It is clear from Figs.5 and 6 that the lifetime of 

the soliton, τ/τ
0
, increases rapidly with increasing μand (χ

1
+χ

2
). 

Furthermore, when μ≥5.8 and (χ
1
+χ

2
) ≥ 7.5×10-11N, which are values 

appropriate to the new model, we fi nd τ/τ
0 
＞500. For comparison, 

the corresponding result obtained using Eq. (83) is shown for the 

original Davydov model as a dashed line in fi gure 6. Here we see that 

the increase in lifetime of the Davydov soliton with increasing μ is 

quite slow and the diff erence between the two models increases 

rapidly with increasing μ. Th e same holds for the dependency on 

Table 2: Comparison of characteristic parameters in the Davydov model and in our new model.
Ro To (K) η(×1013/s) 

New model 0.529 294 6.527
Davydov model 0.16 95 2.096
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the parameter (χ
1
+χ

2
), but the result for the Davydov soliton is not 

drawn in fi gure 5. Th ese results show again that the quasi-coherent 

soliton in Pang’s model is a likely candidate for the mechanism of 

bio-energy transport in the protein molecules. In addition it shows 

that a basic mechanism for increasing the lifetime of the soliton in the 

biomacromolecules is to enhance the strength of the exciton-phonon 

interaction.

In fi gure 7 τ/τ
0
 versus η is plotted. Since –η designates the 

infl uence of the thermal phonons on the soliton, it is also an 

important quantity. Th us, it is regarded here as an independent 

variable. Th e other parameters in Eq. (82) take the values in Eq. 

(37). From this fi gure we see that τ/τ
0
 increases with increasingη. 

Th erefore, to enhance   can also increase the value of τ/τ
0.
 In order to 

understand the behavior of the quasi-coherent soliton lifetime in very 

wide ranges, it is necessary to study τ/τ
0
 in the limit ta →0 in Eq. 

(75) or Eqs. (C1) and (C3) (i.e., this is in the initial case) in which we 

can evaluate analytically the values of R
2 
(t) and ξ

2 
(t). In fact, for ta

＜1 both R
2 
(t) and ξ

2 
(t) have power-series expansions. To the lowest 

order as ta →0, it can be found from Eq. (75)
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When, T/T
0
＞1 and π4R

0
T/2μT

0
＞1. Th e above integral is a 

generalization of the usual δ- function for energy conservation in 

zero-temperature perturbation theory. Th us we can obtain from Eqs.

(74) and (87) at n=2 the decay rate of the soliton as
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   (88)

Th e expression of the decay rate of the quasi-coherent soliton in 

this limit is diff erent from Eq. (84). Th erefore, studying properties of 

the lifetime of the new soliton in such a case helps in understanding 

the behavior of the soliton. A summary of the results obtained from 

Eq. (88) are given in fi gures 8-11. Th e dependency of lifetime on 

temperature T is shown in fi gure 8, which has been obtained from the 

numerical evaluation of Eq. (88). 

2
0 = 4.10 at 300K and μ = 5.81-5.96 depending on whether the 

widely accepted or the“three- channel”parameter values for the 

protein are assumed. From these results, it is clear that using widely 

accepted and realistic parameter values, the new model can satisfy 

the relation τ/τ
0
≥500 at 300K and large μand large T

0
. Hence the 

proposed new soliton model provides a viable candidate for the 

biological processes.

Here a new theory of bio-energy transport is proposed to study 

the properties of the nonlinear excitation and motion of the soliton 

along protein molecules. In this theory, Davydov’s Hamiltonian 

and wave function of the systems are simultaneously improved and 

extended, a new interaction is added into the original Hamiltonian, 

and the original wave function of the excitation state of single 

particles is replaced by a new wave function of a two-quanta quasi-

coherent state. From this model, a lot of interesting and new results 

are obtained. Th e soliton has suffi  ciently long lifetime and can pay 

an important role in biological processes. Th erefore, it is an exact 

carrier of bio-energy in living systems. Present problem is why the 

quasi-coherent soliton has such long lifetime? From Eqs. (35) and 

(45) and tables 1 and 2 it can be seen that the binding energy and 

Figure 3: Soliton lifetime τ relatively to 0 as a function of the temperatureT for 
parameters appropriate to theα-helical molecules in Pan’s model in Eq. (9).

Figure 4: log (/0) versus the temperature. The solid line is the result of 
Pang’s model, the dashed line is the result of the Davydov model.
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localization of the new soliton increase due to the increase of the 

nonlinear interactions of exciton-phonon interaction, i.e., the new 

wave function with two-quanta state and the new Hamiltonian with 

the added interaction produce considerable changes to the properties 

of the soliton. In fact, the nonlinear interaction energy in the new 

model is G
p
=8(χ

1
+χ

2
)2 /(1-s2)w=3.8×10-21J, and it is larger than the 

linear dispersion energy, J=1.55×10-22J, i.e., the nonlinear interaction 

is so large that it can really cancel or suppress the linear dispersion 

eff ects in the equation of motion of this model. From this point 

the soliton is stable according to the conditions of formation and 

stability of the soliton in the soliton theory [27,28]. By comparison, 

the non-linear interaction energy in the Davydov model is G
D
＝4χ

2
1 / (1-s2) w≈1.18×10-21J and it is 3-4 times smaller than G

p
. Th us the 

stability of the Davydov soliton is weak compared to that of the new 

soliton. Moreover, the binding energy of the quaasi-coherent soliton 

in Pang’s model is E
BP  

=  4 2
p J/3 = 7.8×10-21J in Eq. (19), which is 

about 2 times larger than the thermal energy, K
B
T = 4.14×10-21J, at 

300K, and about 6 times larger than the Debye energy, BK  = ω
D 

= 1.2×10-21J (here ω
D
 is Debye frequency), and it is approximately 

equal to 0 / 4 = 8.2×10-21J, i.e., it has same order of magnitude of 

the energy of the amide-I vibrational quantum, 0 . Th is shows that 

the quasi-coherent soliton is robust against the quantum fl uctuation 

and thermal perturbation of the systems due to the large energy 

gap between the soliton state and the delocalized state. In contrast, 

the binding energy of the Davydov soliton is only E
BD 

=
Jw3 2

4
1

= 0.188×10-21J , which is about 41 times smaller than that of the 

new soliton, about 23 times smaller than K
B
T and about six times 

smaller than  BK  = ω
D
=1.2×10-21J, respectively. Th erefore, it is 

easily destroyed by thermal and quantum eff ects. Hence the Davydov 

soliton has very small lifetime (about 10-12～10-13s), and it is unstable 

at 300K [15-18,24-26]. Th erefore, the quasi-coherent soliton can 

provide a realistic mechanism for the bio-energy transport in protein 

molecules. Th e two-quanta nature of the quasi-coherent soliton plays 

a more important role in the increase of lifetime relative to that of the 

added interaction because of the following facts. (1) Th e change of the 

nonlinear interaction energy G
P
=2G



































2

1

2

1

2
D 21  by μ

p
 

produced the added interaction in the new model are ΔG = G
P 

(χ
2
≠0)

－G
P 

(χ
2
=0) = 1.08G

D 
< G

P
(χ

2 
= 0) = 2G

D
 and Δμ = μ

P
(χ

2
≠0)－μ

P
(χ

2 
= 

0) = 1.08μ
D
<μ

P
(χ

2 
= 0) = 2μ

D
, respectively, i.e., the roles of the added 

interaction on G
p
 and  

p
 are smaller than that of the two-quanta nature. 

Th e two parameters G
P
 and μ

P
 are responsible for the lifetime of the 

soliton. Th us the eff ect of the former on the lifetimes is smaller than the 

latter. (2) Th e contribution of the added interaction to the binding energy 

of the soliton is about, 

4

2

1

1 2.6BP BD BDE E E



  
     

  
, 

which is smaller than that of the two-quanta nature which is E
"
BD  = 

16E
BD

. Putting them together in Eq. (35) we see that E
BP

≈ 41E
BD

. (3)From 

the (χ
1
+χ

2
)-dependence of τ/τ

0
 in fi gure 5, τ/τ

0
≈100 has already been 

found directly at χ
2 
= 0 which is about 20 times larger than that of the 

Davydov soliton under the same conditions. Th is shows clearly that 

the major eff ect in the increase of the lifetime is due to the modifi ed 

Figure 5: /0 versus (1+2) relation in Eq. (82).

Figure 6: /0 versus μ relation. The solid and dashed lines are results of Eq. 
(82) and Eq. (83), respectively.

wave function. Th erefore, it is very reasonable to refer to the new 

soliton as the quasi-coherent soliton [30-35]. Th e above calculation 

helps to resolve the controversies on the lifetime of the Davydov 

soliton, which is too small in the region of biological temperature. 

However, by modifying the wave function and the Hamiltonian 

of the model, a stable soliton at biological temperatures could be 

produced. Th is result was obtained considering a new coupled 

interaction between the acoustic and amide-I vibration modes and a 

wave function with quasi-coherent two-quanta state. In such a way, 

the quasi-coherent soliton is a viable mechanism for the bio-energy 

transport in living systems. Th erefore, it can be seen that Pang’s model 

is completely diff erent from the Davydov’s model. Th us, the equation 

of motion and properties of the soliton occurring in Pang’s model 

are also diff erent from that in the Davydov’s model. Th e distinction 

of features of the solitons between the two models is shown in table 3 

[15]. From the table 3 we know that our new model repulse and refuse 

the shortcomings of the Davydov model [3], the new soliton in Pang’s 

model is thermal stable at biological temperature 300K, and has so 

enough long lifetime, thus it can plays important role in biological 

processes. 
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Appendix A: Th e partial diagonalization of the Hamiltonian 

implies the diagonalization of that part of the Hamiltonian in Eq. 

(50) which does not involve the creation and annihilation operators 

of new phonons Eq. (48). Th us the condition imposed into the 

functions C
j 
(x) contained in Eq. (53) to realize such a diagonalization 

are equivalent, in the continuum approximation, to the following 

problems of eigenfunctions C
j 
(x) and eigenvalues E

j
 determined by

2
2

0 022 2 ( ) ( ) ( )j j jJr i v J V x C x E C x
x x


  
        

    (A1)

For the above expression of V(x) in Eq. (52) there is only one 

bound state in Eq. (A1)
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00p

1/2

0

p
s 







 
          (A2)

With, energy 
2 2

2
0 2

0

2 2
4s p

v
E J J

Jr
 
 

    
 


         (A3)

and unbounded (delocalized) states
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Th e energy of the lowest unbounded state is greater than that 

of the bounded state by the value J2 2 . Th e functions C
k
(x) are 

normalized as follows:

0 0

2

( ) ( ) ( ), 

| ( ) | 1, ( ) ( ) 0

k k

k s k
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 
Th erefore, 


sA  is an excitation which is localized at the lattice 

distortion, while 

kA creates an unbounded excitation with wave 

vector k. In getting Eq. (A1) the variable x was assumed to be 

continuous and the chain length to tend to infi nity L = Nr
0
→∞. 

Th us this wave vector k has a continuous value between -∞ and ∞. 

In subsequent calculation we mainly use a discrete description. Th e 

continuous description is transformed into a discrete one according 

to the rules

0 0 0
0

1/2

kk s

2/ ,  ,  (kr - k r )

N ,  C ( ) ( ), ( ) ( )
2 2

n k

s k k

dx r dx
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N
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Utilizing Eqs. (50) - (51), (53) and (54), then the partially 

diagonalized Hamiltonian in the new representation is just Eq. (55).

Appendix B: We now calculate U(k, k’’,t) in Eq.(72) utilizing the 

coherent state |u> defi ned by b
q
|u>=u

q
|u> with

* 2 2

*

1 1| exp | | | | ,
2 2

| exp ( )]

q q q q
q

q q q q
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


Utilizing the coherent state ｜u ＞, the U (k, k″,t) in Eq. (72) can 

be represented by
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Where, the integration measure is defi ned as,

Ă
1( )   ,  k k k k k

k
d u dx dy with x iy u


    

Figure 7: /0 versus η relation in Eq. (82).

Figure 8: /0 vs T relation in Pang”s model in Eq. (88).
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Since we can show that,

*21exp( ) | p | | ( 1) |
2k k k k kb b u ex u e e u        

  ,

It, follows that the fi rst matrix element in Eq. (B1) equals
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Th e second matrix element in Eq. (B1) can be represented as a 

path integral that can be evaluated exactly. Utilizing the general 

relationship between the matrix element and the path integral:
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We can evalu ate the path integral by stardand techniques. Th e 

result for Eq. (B2) is
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Substituting above the matrix elements obtained into Eq. (B1) we 

get
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Where,

R
n
(t)= 2

2
1 | | (1 exp[ ( ) ])k k

k

i kv t
n N

 
                    (B5)

Th e u  and u integrations can easily be fi nished. For instance,  

the contribution from the term with the kk u*u   factor, which we 

can denote by )t,k,k(Ua   since it is associated with the absorption 

of a phonon, is

Figure 9: /0 versus (1+2), relations in the new model in Eq. (88). 

Figure 10: /0 versus μ relation in the new model in Eq. (88).

Figure 11: /0 versus T0 relation. Here the solid and dashed lines are the 
results in the new model in Eq. (88) and in the Davydov model, respectively.
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Where,
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We note that the breaking of the translational symmetry by the 

deformation leads to off -diagonal terms corresponding to violation 

of wavevector conservation. However, we can prove that these 

terms are proportional to k
*
kN

1
  which can be neglected when 

either |k|or |k″| is large as compared to 4μ
p
/πr

0
 as can be seen in the 

defi nition of α
k
 in Eq. (59). Furthermore, when -π≤kr

0
≤π and μ

p
＜π2 

the off -diagonal terms are negligible except for a small region at the 

center of the Brillouin zone. Since the small wavevector terms do not 

signifi cantly contribute to Γ
n
 due to the k-dependence of F~ (q,k), 

and thus the off -diagonal terms can be neglected in )t,k,k(Ua 
in the calculation ofΓ

n.
 Th e energy of the soliton state is less than that 

of the unlocalized exciton in the uniform lattice. Th erefore, the parts 

of )t,k,k(Ua  corresponding to the absorption of a phonon make 

the major contributions to the sum in Eq. (72) at the temperature 

and parameter values of interest, and their off -diagonal terms may 

also be neglected just as above. Using the result of the )t,k,k(Ua   

obtained from the above formulae of Eq (72) the decay rate Eq. (74) 

can be obtained. 

Appendix C: If the soliton velocity approaches zero we can get an 

analytical expression for R
2 
(t) and )t(2  at n = 2 defi ned in Eq. (75) 

or Eqs. (B5) and (B7) through inserting Eq. (59) into Eqs. (B5) and 

(B7) and applying the relation of 
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Where, we use the relation kk 1)exp(   .

As t   (because we are interested in the long-time steady 

behaviour) the leading terms in the above asymptotic formulae of 

R
2
(t) and )t(2 can be represented by 
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Except at low temperature, the )t(x  －dependent term in 

the real part of R
2 

(t) is small with respect to 2 (T) for p arameter 

values of interest and can be neglected. Furthermore, since R
0
＜1 ( 

but it is not very small, about R
0
≈0.529) and T

0
＜T (but it is not too 

small, about T
0
≈294K) and R

0
 T/T

0
＜1 for the protein molecules, 

then one can evaluate the integral in Eq. (72) by using the following 

approximation and utilizing the above results of Eqs. (C4-C6)
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Where,

2 2 0
0 1
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2 0
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
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  
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