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ABBREVIATIONS 
AC: Active Control; MSCs: Mesenchymal Stem Cells; RT: 

Resistance Training; CVD: Cardiovascular Disease; T2D: Type 
2 Diabetes; CRP: C-Reactive Protein; IL6: Interleukin 6; IL10: 
Interleukin 10; TNFα: Tumor Necrosis Factor Alpha; cMSCs: 
Circulating Mesenchymal Stem Cells

INTRODUCTION 
Mesenchymal Stem Cells (MSCs) are multipotent stem cells that 

express CD73, CD90, and/or CD105 and that lack CD11b, CD13, 
CD19, CD34, CD45, CD79a, or class II histocompatibility complex 
antigens [1] and which retain the ability to diff erentiate into adipogenic, 
osteogenic/chondrogenic, hepatic, pancreatic, and neuronal cell types 
[2]. Adult MSCs are found in permissive niches throughout the body 
that allow maintenance of the undiff erentiated, multipotent state, 
including the bone marrow, adipose tissue, skeletal muscle, and 
pancreas [3]. Although MSCs may be recruited into the circulation 
from various tissue sources, diff erences in MSC proliferation and 
diff erentiation potential have been noted based on their source 
[4]. For example, the rate of proliferation of bone marrow-derived 
MSCs in vitro derived from older donors demonstrated a slower 
rate of proliferation, increased degree of apoptosis, and decreased 
diff erentiation potential compared to those of younger donors [5], 
although age did not play a role in a later study [6]. Th us, the origin of 
circulating MSCs (cMSCs) and microenvironment may play a critical 
role in determining the potential of MSCs for therapeutic purposes. 

Increased physical activity and exercise training have been 
established as a major intervention for the prevention and treatment 
of Cardiovascular Disease (CVD) and Type 2 Diabetes (T2D) related 
to obesity, due partially to anti-infl ammatory eff ects [7,8]. Exercise 
training has been found to modulate levels of circulating cytokines 
and pro-infl ammatory markers such as C-Reactive Protein (CRP), 
leading to an overall anti-infl ammatory state: Interleukin 6 (IL6), 
which can be pro-infl ammatory in some cases, in the context of 
exercise induces anti-infl ammatory cytokines like Interleukin 10 
(IL10) and inhibits the pro-infl ammatory Tumor Necrosis Factor 
Alpha (TNFα) [reviewed in [9]]. Exercise training is associated 
with decreases in CRP, but this is in tandem with reduction of 
adiposity [10]. Interestingly, a limited number of recent studies 
have shown that exercise may increase numbers of cMSCs, although 
the literature related to the modality, intensity, and duration of 
the exercise is still developing [11]. One of the major functions of 
MSCs is immunomodulation. MSCs co-cultures in vitro decrease 
the production of pro-infl ammatory cytokines from mast cells [12] 
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and, importantly, promote the conversion of pro-infl ammatory 
M1 macrophages into anti-infl ammatory M2 macrophages [13,14]. 
Exercise is also known to alter the balance of M1:M2 macrophages, 
favoring an anti-infl ammatory environment [15]. Currently, the 
International Society for Cellular Th erapy specifi es MSCs as those 
that express CD73, CD90, and/or CD105 and that lack CD11b, CD13, 
CD19, CD34, CD45, CD79a, or class II histocompatibility complex 
antigens [1]. In the present study, we hypothesize that 13 weeks of 
periodized Resistance Training (RT) increases the percentage of 
cMSCs in healthy young adults. 

MATERIALS AND METHODS
Subjects

Th irty-four healthy males and females aged 18-30 y were 
recruited from Purdue University. 20 subjects, 3 male and 17 female, 
were enrolled in the Resistance Training group (RT) and completed 
a 13-wk periodized, progressive resistance training program. Subjects 
in the RT received permission to participate from a state-licensed 
MD. Fourteen subjects, 2 male and 12 female, were enrolled in an 
Active Control Group (AC) and asked to maintain their regular daily 
activities. Both AC and RT subjects were asked to maintain their 
normal diets. Both groups completed weekly sickness questionnaires, 
activity and injury recall logs, and a three-day diet record (two 
weekdays and one weekend day) to estimate habitual energy and 
macronutrient intakes. Additionally, all subjects completed a medical 
history form and a PAR-Q to ensure they did not have any pre-
existing conditions and to allow the researchers to become aware of 
any potential health issues. All subjects signed an informed consent 
form, and this project was approved by the Purdue University 
Institutional Review Board (IRB # 1304013794). 

Anthropometric measurements

Before beginning (Pre) and following (Post) the intervention 
period, body weight, height, and body composition were measured 
and recorded for all subjects. Body weight and height were measured 
on a platform scale and stadiometer, respectively. Body composition 
was determined via dual-energy x-ray absorptiometry (GE/Lunar 
iDXA) as previously described [16]. 

Acclimation period

Both groups completed a 4-d exercise acclimation period to 
ensure proper lift ing technique while performing bench press, 
squat, and deadlift  exercises. Eight repetitions maximum, or the 
maximum amount of weight that can be lift ed eight times, for bench 
press, squat, and deadlift  exercises were assessed during the last 2 
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d of the acclimation period. All acclimation and exercise sessions 
were preceded by 5-10 min of cycle ergometry or walking and were 
completed under the supervision of trained technicians.

Eight repetition maximum testing protocol

All participants in the AC and RT were shown proper lift ing 
techniques in two separate demonstration sessions for squat, deadlift , 
and bench press. Following the second demonstration session, each 
subject estimated a resistance that would allow them to complete eight 
repetitions. If they could complete all 8 until failure, their resistance 
was recorded. If they could not perform 8 repetitions, they were asked 
to decrease the weight by 5-10% for bench press and 10-20% for squat 
and deadlift . If they could perform more than 8 repetitions, they were 
asked to increase the weight by 5-10% for bench press and 10-20% for 
squat and deadlift .

Exercise protocol

Th e RT completed 13 weeks of resistance training on three non-
consecutive days per week, as previously described [16] with the 
modifi cation of 1 week of rest added to the protocol to compensate 
for a national holiday. Undulating periodization progressed starting 
from a 2-wk adaptation period to hypertrophy lift ing, power 
(including plyometrics), circuit/recovery period, and strength lift ing 
(Figure 1). Compound lift s performed regularly included the bench 
press, push-up, bent-over row, seated row, squat, deadlift , walking 
lunge, and crunch. Participants were supervised to ensure proper 
lift ing techniques, minimize the risk of injury, and ensure proper 
progression through the training plan.

Flow cytometry

Resting venous blood samples (20 mL per sample) were collected 
into EDTA vacutainer tubes (BD-Pharmingen, USA) during the 
acclimation period (PRE) and last week (POST) of the 13-week 
intervention period from all study participants. Subjects reported 
to the laboratory between 0700 and 1000 h following an overnight 
fast and having refrained from exercise from the previous 48 h. 
Whole blood samples were stained with CD31, CD45, and CD105 
antibodies (all from eBioscience) as previously described [17]. Data 
was collected in the Flow Cytometry and Cell Separation Facility at 
Purdue University Discovery Park on the Cytomics FC 500 platform 
and analyzed using WinMDI soft ware. 

Statistical analysis

Two-tailed Student’s t-tests were used to compare pre-post 8RM 
values and cMSC percentage for the AC and RT groups. Statistical 
signifi cance was set with p ≤ 0.05. 

RESULTS AND DISCUSSION 
Th e current study extends others noting that exercise increases 

MSC proliferation [18]. We demonstrated that 13 wks of periodized 
resistance training increased the percentage of cMSCs, specifi cally 
CD105+ cMSCs (Figures 2,3, p < 0.05). Th is change occurred without 
any changes in body weight, BMI, or body fat percentage Pre vs Post 
in both AC and RT (Table 1). Likewise, there were no signifi cant 
diff erences in body weight, BMI, or body fat percentage between AC 
and RT at either time point (Table 1). cMSC and 8RM measurements 
increased in Post vs. Pre, indicating that the resistance training regime 
utilized in the present study is eff ective in both improving strength 
and upregulating cMSCs that may be crucial for resistance training-
induced skeletal muscle repair and remodeling. Indeed, many others 

believe that skeletal muscle repair and remodeling are thought to be 
major drivers in improving strength [19-22].

cMSCs arise from a wide variety of tissues throughout the body, 
including bone marrow, adipose tissue, and skeletal muscle. Currently, 
the International Society for Cellular Th erapy specifi es MSCs as those 
that express CD73, CD90, and/or CD105 and that lack CD11b, CD13, 
CD19, CD34, CD45, CD79a, or class II histocompatibility complex 
antigens [1]. Similarly, nonhematopoietic stem cells lack expression 
of CD13, CD34, and CD45 [23]; CD31 is expressed on hematopoietic 
stem cells throughout their ontogeny [24]. Importantly, those 

Figure 1: Adaptation period and undulating periodization schedule. AC, Active 
Control; RT, Resistance Training. 

Figure 2: Eff ects of undulating periodized resistance training on 8RM values in 
squat, deadlift, and bench press exercises before (Pre) and after (Post) 13 wks 
of training, *p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.00001.

Figure 3: A) Representative picture showing FACS analysis for cMSC 
determination in peripheral whole blood samples. Primary gates were set on 
CD31-/CD45- cells, and CD105 expression (FL4 channel) was then determined 
in only those cells that were gated. The negative control sample (clear peak) 
was overlayed with the sample of interest and a marker (M1) was set to capture 
truly positive CD105 stained cells within the CD31-/CD45- population of gated 
cells in the sample of interest (red peak). 
B) Percentage of circulating CD31-/CD45-/CD105+cells before (Pre) and after 
(Post) 13 wks in Active Control (AC) and Resistance Training (RT) groups, *p 
< 0.05.
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nonhematopoietic stem cells that express CD105 have been shown 
to improve cardiac muscle performance following myocardial 
infarction, an eff ect associated with increased angiogenesis [25].

RT is thought to increase the reservoir of cMSCs that contribute 
to tissue repair and regeneration [18]. We speculate that RT recruits 
cMSCs from the anti-infl ammatory environment associated with 
exercise, and this recruitment infl uences the diff erentiation of cMSCs 
into their ultimate cell types. We further speculate that, as seen in 
cardiac muscle tissue [25], exercise enhances skeletal muscle tissue 
function through increased production of cMSCs.

CONCLUSION 
CD105-expressing cMSCs may diff erentiate into various muscle 

types, including skeletal muscle, and may play an important role in 
skeletal muscle repair and regeneration following resistance training. 
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