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INTRODUCTION
SARS-COV-2 Nucleocapsid protein (NCp) plays an essential 

role as a co-factor in the initiation and control of the replication, 
transcription and packaging of the SARS-COV-2 genome [1-6]. 
Dimerization of SARS-COV-2 Nucleocapsid protein (NCp) is an 
important step in the replication, transcription and packaging 
of the SARS-COV-2 genome [7-12]. Oligomerization of NCp is 
also required for the packaging of SARS-COV-2 genome [8-12]. 
Phosphorylation of NCp within a phosphorylation rich domain 
has been proposed to play an important role in the control of NCp 
functions [3,13-18]. Recent work has described the existence of a 
cellular response mechanism for preventing dimerization of NCp 
involving phosphorylation dependent sequestration of monomeric 
NCp by Protein 14-3-3 [13,18]. Th e phosphorylation rich domain 
located in the linker region of NCp is exposed at its surface and 
contains two recognition and binding sites  (RNpSTP and RGTpSP) 
for Protein 14-3-3 [13,18]. Other phosphorylations sites, including 
serines 186 and 202, and threonines 198 and 205 are also present in 
the phosphorylation rich domain of NCp [13,18].

Phosphorylation sites 186, 197 and 202 are mutated to 
phenylalanine, leucine and asparagine in SARS-COV-2 strains/sub-
strains from Iran, Spain and India respectively [13]. Phosphorylation 
recognition sites within the RNpSTP and RGTpSP motifs that 
are recognized by C-TAK1 [13,18-21], including phospho-serine 
197, arginine 203 and glycine 204 are mutated to leucine, lysine 
and arginine or lysine and threonine in SARS-COV-2 strains/sub-
strains isolated from Israel, Italy, Poland, Bangladesh, Greece and 
Czech republic [13]. Th e signifi cance of these mutations has not 
been clearly established. Here, we use structure model analysis, and 
thermodynamic calculation to study the eff ects of these mutations on 
the dimerization of NCp. Th e results provide evidence that mutations 
in the phosphorylation sites and phosphorylation recognition sites 
phospho-serines 186, 197 and 202,  arginine 203 and glycine 204 
increase the Stability Energy (ΔGstability energy) and Binding Energy 
(ΔΔGbinding energy) of NCp-NCp compex. It is submitted that SARS-
COV-2 has evolved to optimize the dimerization of NCp through 
mutations of at least 3 phosphorylation sites, phospho-serines 186, 
197 and 202 and phosphorylation recognition sites, phospho-serine 
197, arginine 203 and glycine 204.

METHODS
Th e  de novo rendering of the structure of dephospho-NCp 

using the Quark Program pursuant to Xu and Zhang, et al. [22,23] 
was as described previously [13]. Phosphorylation of SARS-COV-2 
Nucleocapsid protein (NCp) was performed with FoldX using the 
Build Model Program pursuant to Guerois et al. and Schymkowitz, 
et al. [24,25]. Mutation of amino acid residues within NCp was 
aperformed with FoldX using the Build Model program pursuant 

Guer ois, et al. and Schymkowitz, et al. [24,25]. Docking experiments 
to identify the dimerization of NCp were performed using the ZDOCK 
program pursuant to Pierce, et al. [26].  NCps rendered in this work 
and Protein 14-3-3 (1YZ5) based on the structure determination 
of Benzinger, et al. [27] were analyzed and visualized by the CCP4 
Molecular Graphics Program Version 2.10.11 as described by Mc 
Nicolas, et al [28] and the ZMM Molecular Modeling Program as 
described by Garden and Zhorov [29]. 

Determination and calculation of Stability Energy (ΔGs tability 

energy) of the protein complexes was performed using the Stability 
Program of FoldX as described by Guerois, et al. and Schymkowitz, 
et al. [24,25]. Binding Energy (ΔΔGbind ing energy) of protein complex was 
determined and calculated using the Analyze Complex Program of 
FoldX as described by Guerois, et al. and Schymkowitz, et al. [24,25]. 
Binding Energy Diff erence (ΔΔΔGbinding enrgy diff erence) between phospho-
NCps complex and mutant phospho-NCps complex was calculated 
pursuant to Teng, et al. and Nishi, et al. [30-32] from the equation: 
ΔΔΔG binding energy diff erence = ΔΔG b inding energy (binding energy of phospho-
NCp-14-3-3 complex) - ΔΔGbinding energy (binding energy of dephospho-
NCp-14-3-3 complex.

RESULTS
Th e eff ects of mutations in the phosphorylation sites of NCp 

were determined with respect to the binding of dephospho-NCp, 
mutant dephospho-NCp, phospho-NCp and mutant phospho-NCp 
to themselves. Figure 1 and fi gure 2 represent docking experiments 
of dephospho-NCp and mutant S186F-NCp with themselves. Both 
dephospho-NCp and mutant S186F-NCp readily form complexes. 
Major diff erence in conformations of dephospho-NCp and mutant 
S186F-NCp could be observed. Th e Stability Energy (ΔGstability  energy) 
and Binding Energy (ΔΔGbinding energy) of dephospho- NCp dimer were 
calculated to be ~698 Kcal/mol and 91 Kcal/mol respectively while 
the calculated Stability Energy (ΔGstability energy) and Binding Ene rgy 
(ΔΔGbinding energy) of mutant S186F-NCp dimer was calculated to be 
~770 Kcal/mol and ~168 respectively.  Th ese results suggest that 
mutation of serine 186 of NCp to phenylalanine 186 was accompanied 
by enhanced stabilization and binding affi  nity between the two 
components of the NCp dimer. Th e Binding Ene rgy Diff erence 
(ΔΔΔGbindin g energy diff erence) between dephospho-NCp dimer and mutant 
S186F-NCp dimer was calculated to be ~78 Kcal/mol. Pursuant to 
Teng et al. and Nishi et al. [30-32], positive Binding Energy Diff erence 
(ΔΔΔGbinding energy diff erence) is thermodynamic evidence of stabilization 
and increase of binding effi  ciency.

Table 1 depicts the thermodynamic calculations of Stability E nergy 
(ΔGstability energy), Binding Energy (ΔΔGbinding energy) and Binding Energy 
Diff erence (ΔΔΔGbinding energy diff erence) of the dimerization of various 
NCp mutants with respect to dephospho-NCP dimer. Th e dimers of 
mutants S197L and S202N were associated with decreased Stability 
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Energy (ΔGstabilit y energy) and Binding Energy (ΔΔGbinding energy). However, 
the dimers of mutants RG203/204KR -NCp and RG203/204KT-NCp 
were associated with signifi cant increase of Stability Energy (ΔGstability 

energy), Binding Energy and positive Binding Energy Diff erence 
(ΔΔΔGbinding energy diff erence) in comparison to dephospho-NCp dimer. 
Th ese results are indicative of enhanced binding affi  nity between the 
NCp mutants.

Figure 3 illustrates the docking of phospho-ser ine 186-NCp. Th ere 
was considerable diff erence in the conformations of phospho-serine 
186-NCp and mutant S186F-NCp dimers (compare fi gure 2 with 

fi gure 3).  Th e calcul ated  Stability Energy (ΔGstability  energy) and Binding 
Energy (ΔΔGbinding  energy) of phospho-ser ine 186 NCp dimer were ~667 
Kcal/mol and 63 Kcal/mol respectively while the calculated Stability 
Energy (ΔGstability energy) and Binding Energy (ΔΔGbinding energy) of mutant 
S186F-NCp dimer was ~770 Kcal/mol and ~168 respectively.  Th ese 
results are evidence that mutation of phospho-serine 186 of NCp to 
phenylalanine 186 was accompanied by enhanced stabilization and 
binding affi  nity between the two components of the NCp dimer. Th e 
Bindin g Ene rgy Diff erence (ΔΔΔGbindin g energy diff erence) between phospho-
serine 186-NCp dimer and mutant S186F-NCp dimer was calculated 
to be ~105 Kcal/mol, confi rming thermodynamic stabilization and 
enhancement of binding effi  ciency between the molecules of the NCp 
dimer.

Figures 4 and 5 show the dimerizations of phospho-serine 197-
NCp and phospho-se r ine 197-S186F mutant-NCp. Th e results show 
that both phospho-serine 197-NCp and phospho-serine 197-S186F 
mutant-NCp form dimers and there was marked diff erence in their 
conformations. Th e calcu lated Stability E nergy (ΔGstability energy) and 
Binding Energy (ΔΔGbinding energy) of phospho-se r ine197-NCp dimer 
were ~699 Kcal/mol and ~87 Kcal/mol respectively whereas the 
Stability Energy (ΔGstability energy) and Binding Energy (ΔΔGbinding energy) 
of the phospho-ser ine197-S186F mutant-NCp dimer were ~788 Kcal/
mol and ~184 Kcal/mol respectively. Th e Binding Energy Diff erence 
(ΔΔΔGbinding energy diff erence) between phospho-serine 197-NCp dimer and 
phospho-serine197-S186F mutant-NCp dimer was calculated to be 
~97 Kcal/mol, evidencing enhanced thermodynamic stabilization and 
binding affi  nity between the components of the phospho-serine197-
S186F mutant-NCp in the NCp dimer.

Figures 6 and 7 summarizes the docking experiments of phospho-
se r ine 202-NCp and phospho-ser ine 202-S186F mutant-NCp with 
themselves. Both phospho-serine 202-NCp and phospho-ser ine 
202-S197L mutant-NCp form dimers with recognizable diff erence 

A/ 

 

  

 B/

Figure 1: A: Ribbon structure (red) of dephospho-SARS-COV-2 
Nucleocapsid protein (NCp) dimer, rendered as described in Method 
Section. Phosphorylation rich domain is shown as blue spheres. B: Realistic 
rendering of dephospho-SARS-COV-2 Nucleocapsid protein (NCp) complex 
(component 1 is colored red and blue while component 2 is colored yellow).

Table 1: Thermodynamic calculations, including Stability Energy (ΔG stability), 
Binding Energy (ΔΔG binding energy) and Binding Energy Diff erence (ΔΔΔG 
binding energy diff erence) that underlie the dimerization of dephospho-NCp and 
various mutant-NCps.

Stability
Energy

(ΔG)
Kcal/mol

Binding
Energy
(ΔΔG)

Kcal/mol

Binding
Energy

Diff erence
(ΔΔΔG)

Kcal/mol
-Dephospho-NCp-NCp

complex
~698 ~90 ~ 000

-S186F mutant-NCp-NCp
complex

~770 ~168 ~ 078

-Phospho-serine 186-S197L
mutant-NCp-NCp complex

~689 ~87 ~ -03

-Phospho-serine 186-S202N
mutant-NCp-NCp complex

~675 ~67 ~ -23

-Phospho-serine 
186-RG203/204KR

mutant-NCp-NCp complex

~737 ~136 ~ 046

-Phospho-serine 
186-RG203/204KT

mutant-NCp-NCp complex

~759 ~156 ~ 066

A/ 

 

 

 

B/

Figure 2: A: Ribbon structure (red) of S186F mutant-SARS-COV-2 
Nucleocapsid protein (NCp) and Protein 14-3-3 complex, rendered as 
described in Method Section. Blue spheres show the phosphorylation rich 
domain, B: Realistic rendering of S186F mutant SARS-COV-2 Nucleocapsid 
protein (NCp) complex  (component 1 is colored red and blue while component 
2 is colored yellow).
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in the conformation of their respective dimers. Th e Stabili ty Energy 
(ΔGstability energy) and the Binding Energy (ΔΔGbinding energy) of the 
phospho-ser ine 202-NCp dimer were calculated  to be ~696 Kcal/mol 
and 95 Kcal/mol respectively. Th e Stability E nergy (ΔGstability energy) and 
the Binding Energy (ΔΔGbinding energy) of the phospho-serine 202-S186F  
mutant-NCp dimer were calculated to be 761 Kcal/mol and ~165 
Kcal/mol respectively. Th e Binding Energy Diff erence (ΔΔΔGbindin g 

energy diff erence) between the dimers of phospho-serine 202-NCp and 
phospho-serine 202-S197L mutant-NCp was ~70 Kcal/mol. Th ese 
results are consistent with the conclusion that mutation of serine 186 
to phenylalanine caused enhanced stability and binding affi  nity of 
between the components in the NCp dimer.  

Table 2 summarizes the thermodynamic calculations of various 

A/ 

 

 

 

 

B/

Figure 3: A: Ribbon structure (red) of phospho-serine 197-SARS-COV-2 
Nucleocapsid protein (NCp) dimer. Blue spheres show the phosphorylation 
rich domain of NCp), rendered as described in Method Section. B: Realistic 
rendering of phospho-197-SARS-COV-2 Nucleocapsid protein (NCp) dimer 
(component 1 is colored red and blue while component 2 is colored yellow).

A/ 

 

 

 
B/

Figure 4: A: Ribbon structure (red) of phospho-serine 197-SARS-COV-2 
Nucleocapsid protein (NCp) dimer. Blue spheres show the phosphorylation 
rich domain of NCp), rendered as described in Method Section. B: Realistic 
rendering of phospho-186-SARS-COV-2 Nucleocapsid protein (NCp) dimer. 
(Component 1 is colored red and blue while component 2 is colored yellow).

A/ 

 

 

 

B/

Figure 5: A: Ribbon structure (red) of phospho-serine 197-S186F mutant-
SARS-COV-2 Nucleocapsid protein (NCp) dimer. Blue spheres show the 
phosphorylation rich domain of NCp), rendered as described in Method 
Section. B: Realistic rendering of phospho-186-SARS-COV-2 Nucleocapsid 
protein (NCp) dimer. (Component 1 is colored red and blue while component 
2 is colored yellow).

A/ 

 

 

 B/

Figure 6: A: Ribbon structure (red) of phospho-serine 202-SARS-COV-2 
Nucleocapsid protein (NCp) dimer. Blue spheres show the phosphorylation 
rich domain of NCp), rendered as described in Method Section. B: Realistic 
rendering of phospho-serine 202-SARS-COV-2 Nucleocapsid protein (NCp) 
dimer ((component 1 is colored red and blue while component 2 is colored 
yellow).
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Table 2: Thermodynamic calculations, including Stability Energy (ΔG stability), 
Binding Energy (ΔΔG binding energy) and Binding Energy Diff erence (ΔΔΔG 
binding energy diff erence) that underlie the dimerization of various phospho-
NCp and various mutant-NCps.

Stability
Energy

(ΔG)
Kcal/mol

Binding
Energy
(ΔΔG)

Kcal/mol

Binding
Energy

Diff erence
(ΔΔΔG)

Kcal/mol

-Phospho-serine 186-NCp-NCp
complex ~667 ~63 ~ 000

-S186F mutant-NCp-NCp
complex

~770 ~168 ~ 105

-Phospho-serine 186-S197L
mutant-NCp-NCp complex

~660 ~62 ~ -01

-Phospho-serine 186-S202N
mutant-NCp-NCp complex

~658 ~55 ~ -08

-Phospho-serine 
186-RG203/204KR

mutant-NCp-NCp complex
~665 ~67 ~ 004

-Phospho-serine 
186-RG203/204KT

mutant-NCp-NCp complex
~668 ~67 ~ 004

-Phospho-serine 197-NCp-NCp
complex ~699 ~87 ~ 000

-S197L mutant-NCp-NCp
complex

~689 ~87 ~ 000

-Phospho-serine 197-S186F
mutant-NCp-NCp complex

~788 ~184 ~ 097

-Phospho-serine 197-S202N
mutant-NCp-NCp complex

~844 ~239 ~ 152

-Phospho-serine 
197-RG203/204KR

mutant-NCp-NCp complex
~734 ~130 ~ 043

-Phospho-serine 
197-RG203/204KT

mutant-NCp-NCp complex
~760 ~157 ~ 070

Phospho-serine 202-NCp-NCp
complex

~696 ~95 ~ 000

-S202N-mutant-NCp-NCp
complex

~689 ~87 ~ -08

-Phospho-serine 202-S186F
mutant-NCp-NCp complex

~761 ~165 ~ 070

-Phospho-serine 202-S197L
mutant-NCp-NCp complex

~737 ~141 ~ 046

-Phospho-serine 
197-RG203/204KR

mutant-NCp-NCp complex
~710 ~111 ~ 016

-Phospho-serine 
197-RG203/204KT

mutant-NCp-NCp complex
~756 ~155 ~ 060

A/ 

 

 

 

B/

Figure 7: A: Ribbon structure (red) of phospho-serine 202-S186F mutant-
SARS-COV-2 Nucleocapsid protein (NCp) dimer. Blue spheres show the 
phosphorylation rich domain of NCp), rendered as described in Method 
Section. B: Realistic rendering of phospho-202-S186F mutant-SARS-COV-2 
Nucleocapsid protein (NCp) dimer (component 1 is colored red and blue while 
component 2 is colored yellow).

NCp mutant-Protein 14-3-3 complexes. Th e results showed that like 
mutations of serines 186, 197 and 202 of NCp, mutations of arginine 
203 and glycine 204 within the motif RGTpS P to lysine 203 and 
arginine 204 or lysine 203 and threonine 204 were accompanied by 
signifi cant increase in Stability Energy (ΔGstability energy)  and Binding 
Energy (ΔΔGbinding energy). Calculation of Binding Energy Diff erence 
(ΔΔΔGbinding energy diff erence) between the various reference phospho-
NCps and mutant-NCps confi rms that the above mutations were 
indeed accompanied by signifi cant increase in stability and binding 
effi  ciency of the respective NCps.

DISCUSSION
It was previously shown that phosphorylation of serines 186, 197 

and 202 of NCp cause a decrease in Stability Energy and Binding 
Energy of NCp in its dimer [13,18].  Mutations in the phosphorylation 
sites, serine 186, 197 and 202, and phosphorylation recognition sites, 
phospho-serine 197, arginine 203 and glycine  204 within the motifs 
RNpSTP and RGTpSP to leucine, lysine 203 and  arginine 204 or 
lysine 203 and threonine 204 respectively were identifi ed in strains/
sub-strains isolated from individuals located in various parts of the 
world [13]. It was proposed that mutations in the phosphorylation 
sites and phosphorylation recognition motifs allow NCp to evade 
sequestration by Protein 14-3-3 which would result in enhanced 
dimerization of NCp, an important essential step for NCp to act as 
a co-factor for the replication, transcription and packaging of the 
SARS-COV-2 genome [13,18]. Th e present work provides evidence 
that mutations in the phosphorylation sites, serines 186, 197 and 202, 
and phosphorylation recognition sites, phospho-serine 197, arginine 
202 and glycine 203 within the motifs RNpSTP and RGTpSP were 
accompanied by signifi cant enhancement of the stability and binding 
affi  nity of the NCp dimer. 

While there is a phosphorylation dependent cellular response 
mechanism to bind, sequester and inhibit the functions of NCp by 

Protein 14-3-3 in cells infected with SARS-COV-2, it is submitted 
that the latter has evolved to evade sequestration by Protein 14-3-3 
through mutations of phosphorylation sites, S186F, S197L and S202N, 
and phosphorylation recognition sites, pS197L, RG203/204KR and 
RG203/204KT within the phosphorylation motifs, RNpSTP and 
RGTpSP [13,18]. It is also submitted that SARS-COV-2 has evolved 
through these mutations to enhance NCp’s dimerization and its 
activity as an essential co-factor for the replication, transcription and 
packaging of the SARS-COV-2 genome (the present work). 

Because of the essential role of NCp dimerization in the initiation 
and control of the replication, transcription and packaging of the 
SARS-COV-2 genome, drug discovery and vaccine development 
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programs that target NCp specifi cally are quite apparent [33-40]. 
However, from the above, it is clear that any drug discovery and 
vaccine development program that target NCp must take into 
account mutations in the phosphorylation sites (S186F, S197L and 
S202N) and phosphorylation recognition sites (phospho-serine 197, 
RG203/204KR and RG203/204KT) that occur within NCp in SARS-
COV-2 strains and sub-strains that are seen in various populations 
and geographical areas.   Molecules that act to enhance the 
sequestration of NCp by Protein 14-3-3 and p revent the dimerization 
of NCp are potential therapeutics for the control of SARS-COV-2 
viability, infection and virulence. Molecules that act to prevent 
the dimerization of NCp at picomolar concentrations have been 
identifi ed and are being characterized (Limtung, P. and Tung, H.Y.L., 
manuscript in preparation) [41,42]. 
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