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INTRODUCTION
Toxoplasmosis is an anthropozoonosis caused by an obligate 

intracellular protozoan parasite, Toxoplasma gondii. It is one of the 
most successful parasites in the world as illustrated by its global 
distribution [1], with one third of human population being infected 
[2]. Only 10-20% of immunocompetent individuals show mild 
symptoms of a fl u-like illness with lymphadenopathy and low grade 
fever [3]. Severe disease arises following congenital infection, in 
patients with immunosuppressive disorders (e.g. HIV/AIDS) and 
those undergoing immunosuppressive therapy for conditions such as 
organ transplantation [4].

Congenital transmission usually occurs when mothers who 
become infected during pregnancy pass the infection to the fetus 
[5]. Reactivation of an infection acquired before pregnancy can 
also lead to congenital transmission by immunosuppressed women 
[6,7] though factors associated with the reactivation are yet to be 
elucidated. Although congenitally infected infants may be born 
without any symptoms, a signifi cant proportion later develops 
chorioretinitis, cardiac anomalies and toxoplasmic encephalitis 
following reactivation [8]. Toxoplasmic encephalitis, with or without 
CNS lesions, is the most common manifestation of toxoplasmosis in 
individuals with AIDS [9,10] and may occur in up to 50% of those 
with other forms of immunodefi ciency. Brain infection results in 
several specifi c clinical manifestations involving modifi cations of 
host behavior [11-13]. 

Management of toxoplasmosis however faces numerous 
challenges ranging from lack of reliable screening tests [14,15] to lack 
of eff ective prevention and treatment options [16,17]. Mitigating these 
challenges calls for development of a high-fi delity and homologous 
animal model showing the infection pattern and symptoms identical 
to those of humans. Old world monkeys, being phylogenetically close 
to humans, are valuable models for studying human diseases. Th e 
cynomolgus monkey (Macaca fascicularis) has been used to study 
pathogenesis of ocular toxoplasmosis [18] and the Rhesus monkey 
(Macaca mulata) to study pathogenesis of congenital toxoplasmosis 
[19]. 

Th e baboon has been described as an ideal model for biomedical 

research [20] due to its physiological, immunological, and 
biochemical similarities to humans, and the fact that all parameters 
in human physiology can be measured with the same or equal 
technical equipment [21]. Besides the advantage of their phylogenetic 
proximity to humans, their body sizes make them well-suited to 
serial extraction of suffi  cient blood and CSF volumes during studies. 
Th e main objective of this study was to evaluate suitability of the 
olive baboon as a non-human primate model for toxoplasmosis. 
Th is monkey is widely distributed throughout Africa and has been 
reported to naturally acquire toxoplasmosis in the wild [22].

MATERIALS AND METHODS
Ethics statement

Th is study was performed at the Institute of Primate Research 
(IPR, Nairobi, Kenya). IPR is locally and widely recognized in 
Africa as a Center of Excellence in preclinical research. Prior to 
commencement of the study, all protocols and procedures used were 
reviewed and approved by the Institutional Animal Care and Use 
committee of the Institute of Primate Research in Kenya (approval 
number: IRC/21/11).

Experimental animals

Baboons: Four healthy adult olive baboons (Papio anubis), 
two males and two females, sourced from the Institute of Primate 
Research (IPR, Nairobi, Kenya), were used in this study. Th e animals 
had earlier been trapped from the wild and quarantined according 
to the established protocol at IPR. We subsequently screened them 
for previous exposure to toxoplasmosis by Nested Polymerase Chain 
Reaction (nPCR) as described by [22] and they tested negative. 
Th roughout the study period, the animals were maintained in 
individual cages. Th ey were fed with commercial monkey chow, 
supplemented with fruits and vegetables. Water was availed ad 
libitum.

Swiss white Mice: Seventy four adult Swiss white mice were 
obtained from the rodent breeding facility at the Institute of Primate 
Research, Nairobi, Kenya. Th ey were 6-8 weeks old and weighed 
20-30 g. Th ey were housed under standard laboratory conditions, 
in plastic cages (medium size cages; length 16.9 inches, width 10.5 
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inches, and height 5 inches) and were provided with wood shaving 
bedding and nesting material. Feed (Mice Pellets®, Unga Feeds Ltd, 
Kenya), and drinking water were provided ad libitum.

Toxoplasma gondii isolation and expansion

Th e T. gondii isolate used in this study was obtained from the brain 
of free range chicken from Th ika sub-county, Kenya as described by 
[23]. In summary, the chicken were sacrifi ced by cervical dislocation 
and brain tissue collected under sterile conditions. Th e brain was 
ground in a pestle and mortar; 1ml of Phosphate Buff ered Saline (PBS) 
added and homogenized using tissue homogenizer [24]. Presence of 
tissue cysts was confi rmed by direct microscopy and aliquots of the 
brain suspension preserved in liquid nitrogen. At the commencement 
of this study tissue cysts were recovered from the liquid nitrogen and 
allowed to thaw on the bench for about 30 minutes and then vortex 
mixed. Cysts were enumerated by transferring three aliquots of 20 μl 
of the brain suspensions onto microscopic slides, a coverslip placed 
over each sample and number of cysts counted in the entire sample 
at X20 magnifi cations directly without staining. Th e brain suspension 
was serially diluted with PBS (pH 7.2) to adjust to a desired fi nal 
concentration of 15 tissue cysts/200μl [25]. To obtain tachyzoites for 
baboon infections, 3 Swiss white mice were intraperitoneally injected 
each with 15 tissue cysts. Th e mice were euthanized on the fourth day 
using CO2. 5 ml of PBS was injected intraperitoneally into the mice, 
the bellies gently massaged and the peritoneal fl uid aspirated using 
a gauge 21 needle. Tachyzoites were enumerated using a Neubauer 
chamber and serially diluted with PBS to a fi nal concentration of 5 
x 106/ml. 

Study design

Baboon infection, follow up and sampling: Baboons were 
experimentally infected with 5 x 106 tachyzoites through inguinal 
venipuncture. Every day the animals were monitored for behavioral 
and clinical presentation. Every week they were anaesthetized with 
a mixture of ketamine hydrochloride at 10 mg/kg and xylazine 
hydrochloride at 2 mg/kg body weight. A thorough physical and 
clinical examination and full blood count using an automated blood 
cell counter were performed during the whole experimental period. 
Before inoculation, weekly, for a period of three weeks, 5 ml blood 
and 2 ml Cerebrospinal Fluid (CSF) samples were collected to provide 
pre-infection baseline data. Following infection, 10 ml of inguinal 
blood and 2 ml lumbar CSF were collected on days 0, 7, 14, 21, 28, 35, 
42, 49, 56 and 63 for hematology and parasitaemia determination by 
direct cytology and mouse bioassay. 2 ml of the blood for hematology 
was collected in heparinized vacutainers while 8 ml was left  on the 
bench overnight and then centrifuged the following morning at 800 
g for 10 min and serum separated. Th e serum was stored at -20°C for 
biochemical analyses. On day 42 PI, one animal, a female (PAN 4107), 
was randomly selected and sacrifi ced and various tissues harvested 
for histopathology. Th e remaining three animals (PAN 4080, PAN 
4092 and PAN 4104) were, from day 46 PI, immunosuppressed using 
tacrolimus (PanGraf® 1.0 Panacea Biotec Ltd, Malpul, Baddi, Tehsil 
Nalagah, India) administered orally daily at 0.2 mg/kg body weight, 
given as two divided doses, in the morning and in the evening. At the 
end of the experiment (day 63 PI) all animals were euthanized and 
relevant tissues harvested for histopathology.

Hematologic procedure: An automated coulter counter (Ac. T 
5diff  CP, Beckman Coulter, USA) was used to determine Parked Cell 
Volume percent (PCV %), Red Blood Cells (RBC), Mean Cell Volume 
(MCV), Mean Cell Haemoglobin (MCH), MCH concentration, 

White Blood Cells (WBC), neutrophils, lymphocytes, eosinophils, 
basophils and platelets.

CSF collection: Th e lumbar region of the baboon was cleanly 
shaven and cleaned with an antiseptic. A gauge 23 needle was used 
to harvest 2 ml of clean CSF from a lumbar spinal segment into a 
curvet. Th e CSF was centrifuged at 1500 rpm for ten minutes and the 
supernatant decanted and stored at -20°C for biochemical analysis. 
Th e cell pellet was reconstituted in 1 ml PBS, vortex mixed and used 
for preparation of wet smears in a Neubauer chamber for parasite 
identifi cation and quantifi cation. Th e rest of the reconstituted CSF 
pellet solution was used for mouse bioassay via intraperitoneal 
inoculation. 

Mouse bioassay: Seventy four Swiss white mice were used for the 
determination of parasitaemia in baboon blood and CSF (37 mice 
each) starting from the day of infection. Eight mice were used every 
week, two for every baboon. One mouse was inoculated with blood 
and the other with CSF and monitored for eight weeks aft er which 
they were euthanized using CO2. Brains were harvested and divided 
symmetrically into two. One half was gently ground using pestle and 
mortar and a suspension made by adding 1 ml PBS. Examination for 
tissue cysts was done using a Neubauer chamber and slides of the 
brain suspension made and stained with H&E. Th e other half was 
cryopreserved. 

Data management and statistical analysis

Data was recorded in notebooks and keyed into Microsoft  Excel 
which acted as the database. Th e data was analyzed using the paired 
Student’s t-test to compare pre-infection and post-infection means. 
Microsoft  Excel 2013 was used to perform the Student t-test. Th e 
t-test was considered signifi cant when the p < 0.05. 

RESULTS
Th e pre-infection data at day 0 comprised of means of four weekly 

pre-infection samples collected on days, -21, -14, -7 and 0. Th ese data 
were compared with subsequent weekly post-infection means. Th ree 
baboons developed toxoplasmosis characterized by CSF and blood 
parasitaemia. It was not possible to draw CSF from one baboon at 
any time due to her extremely narrow lumbar spaces. However, we 
demonstrated blood parasitaemia throughout the acute phase of the 
disease at the end of which she was sacrifi ced.

Parasitaemia in Baboon CSF and blood via mouse 
bioassay

Th e establishment of toxoplasmosis was confi rmed by 
parasitaemia, in CSF and blood, determined by cytology and mouse 
bioassay. Some mice developed an acute disease and died soon aft er 
inoculation. Th e others developed a very rough hair coat and became 
cachexic but went through the whole experimental period. Brain 
suspensions from all mice showed heavy presence of tissue cysts 
when visualized microscopically using a Neubauer chamber (Figure 
7). Giemsa stained slides showed tissue cysts containing numerous 
bradyzoites (Figures 8,9). Some slides showed tissue cysts located 
within neuronal processes (Figure 10). Th e tissue cysts within the 
axons were usually organized in a bead-like arrangement (Figure 11).

Parasitaemia in CSF via direct cytology

Toxoplasma gondii parasites appeared in CSF within seven days 
of infection. Th e parasites were not detectable cytologically, using a 
Neubauer chamber, from day 28 Post Infection (PI). Th e parasites were 
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however detectable on 56th day PI, 10 days aft er immunosuppression 
with tacrolimus till the end of the experiment (Table 1, Figure 1).

Physico-clinical and hematological data

Cerebrospinal fl uid parasitaemia changes: Following 
inoculation, rapidly swimming tachyzoites were detectable in CSF 
from day 7 PI, peaked on day 14 PI and waned off  on day 28PI. Aft er 
immunosuppression with tacrolimus on day 46 PI, the tachyzoites 
reappeared consistently in CSF till the end of experiment (fi gure 1).

Physico-clinical changes: Only one baboon, (PAN 4104), 
developed a rough hair coat from day 14 post infection till the end 
of the experiment. Th is baboon also developed ocular opacity in both 
eyes from day 21 PI (Figure 12). PAN 4092 developed moderately 
enlarged axillary and inguinal lymph nodes from day 14 PI.

Between 5- 10 days aft er commencement of immunosuppression, 
PAN 4092 and PAN 4080 became hyperactive, exhibited erect 
mane hairs, overt aggression and continuous yawning, gnashing/
grinding of teeth and tongue rolling. Th ey displayed hyperactivity by 
continuously moving in their cages. Th is behavior remained till the 
end of the experiment. PAN 4107 however exhibited extreme fear. 
He developed a dull demeanor, always very quiet appearing oblivious 
of the surroundings and perched at one corner of the cage. When 
approached, he would make sudden jumps towards the topmost 
corner of the cage knocking his head hard on the roof.

Mean body weights: Mean body weights increased gradually 
throughout the experiment. Th e most statistically signifi cant increases 
were noted on days 35 (p = 0.005) and 42 (p = 0.049) post infection as 
depicted in the Figure 2 below.

Mean body temperature: Mean body temperature values 
fl uctuated evenly throughout the experimental period but without 
statistical signifi cance (p > 0.05) as depicted in Figure 3.

Total RBC count and PCV: Th ere was a gradual statistically 
signifi cant rise in total RBC counts (p = 0.040) and PCV % (p = 0.010) 
throughout the acute phase of the infection. Aft er immunosuppression 
the values declined to pre-infection values (Figures 4,5).

DISCUSSION
Classically, toxoplasmosis in immunocompetent individuals 

begins with an acute phase associated with rapid tachyzoite 
proliferation followed by a chronic stage, characterized by the 
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presence of latent cysts within the central nervous system and skeletal 
muscles [26] with subsequent immunosuppression resulting in 
reactivation and development of toxoplasmic encephalitis [9]. Th e 
present study managed to successfully establish the disease in olive 
baboons, as evidenced by parasitaemia and physico-clinical changes; 
the acute stage from infection to appearance of parasites in CSF (7-
21 DPI), latent stage from 28 DPI to day 56 PI and a toxoplasmic 
encephalitis stage characterized by reappearance of CSF parasites and 
associated neurological signs aft er commencing immunosuppression. 
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We recorded signifi cant body weight gains throughout the 
latent stage of infection. According to our knowledge, this could 
be the fi rst experiment to demonstrate a causal relationship 
between toxoplasmosis and obesity. Th is phenomenon, referred 
to as “infectobesity”, suggests the potential role of environmental 
organisms in the pathogenesis of obesity [27,28]. Latent toxoplasmosis 
has been associated with weight gain/obesity in rats [29] and humans 
[30]. Th e peripheral and/or central mechanisms responsible have 
not been clearly elucidated but parasite induced biochemical [31] 
and behavioral alterations may play signifi cant roles. Clinically one 
animal showed moderately swollen inguinal and axillary lymph 
nodes. Th ere were no behavioral changes reported during the latent 
phase of the infection. 

Th is study also reports development of bilateral ocular opacity 
in one baboon suggesting the establishment of ocular toxoplasmosis 
following experimental postnatal infection. Ocular lesions occur 
in up to 25% of individuals infected with T. gondii though in some 
countries up to 50% of all cases of posterior uveitis in certain 
populations are attributable to toxoplasmosis [32,33]. As a rule 
of thumb, ocular toxoplasmosis has commonly been attributed 
to congenitally acquired infection [34,35] or reactivation [36,37] 
except where clear evidence exists to show that infection has been 
acquired postnatally. Our study reinforces available evidence which 
confi rms that a signifi cant proportion (at least two thirds) of ocular 
toxoplasmosis is caused by primary acute postnatal infections [38-
40]. Indeed ocular lesions have been reported to appear in patients as 
early as 2 months aft er the onset of infection [41]. Th e role of diff erent 
T. gondii strains in the causation of either acquired or congenital 
infection is still not clear. Murine model virulence studies [42] have 
described three clonal lineages of T. gondii, namely types I, II and III. 
While traditionally the type II clonal lineage has been incriminated 

in the majority of postnatal ocular lesions, and type I in congenital 
toxoplasmosis [42], more recent studies have shown that type I and 
some atypical strains may also play a signifi cant role in postnatal 
ocular infection [42,43]. Th e parasite strain used in this study needs 
to be ascertained.

Toxoplasma gondii tachyzoites were detected using direct CSF 
microscopic examination from day 7 PI and persisted up to day 28PI. 
Th ey were subsequently undetectable microscopically throughout 
the rest of the acute phase. Th e disappearance of the parasites from 
blood and CSF suggests conversion of tachyzoites to bradyzoites and 
subsequent formation of tissue cysts [44]. However mice inoculated 
with blood and CSF collected from the baboons at all sampling points 
throughout the acute phase and beyond developed toxoplasmosis, 
indicating existence of a source of a sustained “low dose” parasitaemia. 
Th is confi rms that while tissue cysts are long-lived, they episodically 
rupture at a low but continuous frequency without reactivation since 
the bradyzoites released are readily killed by the host immune factors, 
especially cell-mediated immunity [45]. Th e episodically released 
parasites were however detected by mouse bioassay confi rming it 
as the “gold standard” for detection of infective stages of T. gondii 
[46,47]. Appearance of tachyzoites in CSF just 7 days PI indicates this 
rapid migration into the brain as a means of escaping the hostile host 
immune response within circulation into the less immunologically 
robust brain where they encyst and predominantly reside in neurons 
[48]. Th e tropism of T. gondii parasites for neurons is attributed to the 
fact that neurons are not capable of effi  ciently clearing the parasites 
[49] because they are somewhat immunologically naive and lack full 
immune-response capabilities [50].

Within 10 days of commencement of immunosuppression, 
tachyzoites were detectable by both direct microscopy and mouse 
bioassay once again, indicating massive release of parasites from 
latent tissue cysts, and reactivation of the disease. Reappearance of 
CSF parasitaemia coincided with onset of the neurological syndrome 
characterized by aggression, continuous pathological yawning, 
and tongue rolling/chewing, gnashing of teeth, extreme fear, dull 
demeanor, withdrawal and being oblivious of the surroundings. 
Th is syndrome marked the onset of Toxoplasmic Encephalitis 
(TE), a potentially fatal condition that most frequently presents in 
immunocompromised individuals. TE is one of the most common 
Central Nervous System (CNS) disorders seen in AIDS patients 
[51,52]. T.gondii may play a role in the etiopathogenesis of psychiatric 
disorders by aff ecting neurotransmitters, especially dopamine, that are 
implicated in the emergence of psychosis and behavioral abnormalities 
like schizophrenia [53], bipolar disorder [54], self-directed violence 
and suicidal tendencies [55,56] and by inducing brain infl ammation 
through direct stimulation of infl ammatory cytokines in the central 
nervous system [57-59]. 

Th is study has demonstrated hematological changes generally 
characterized by upregulation of erythropoiesis and a concurrent 
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Table 1: CSF parasitaemia in baboons experimentally infected with Toxoplasma gondii and then immunosuppressed on day 46PI using tacrolimus administered 
orally. PAN, Papio anubis; DPI, Day Post Infection; NS, No sample; Tac, Tacrolimus immunosuppression; Parasitaemia in x 106.

Animal
Number/DPI 0 7 14 21 28 35 42 46 49 56 63

PAN 4080 0 5.125 4.375 0.035 0.005 0 0 Tac 0 0.030 0.010

PAN 4092 0 3.575 2.390 0.010 0 0 0 Tac 0 0.010 0.150

PAN 4107 0 1.355 0.150 0.005 0 0 0 Tac 0 0.060 0.040

PAN 4104 0 NC NS NS NS NS NS EUTH
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A cluster of 
tissue cysts 

Figure 7: (X 40 mag): Plain/unstained Neubauer chamber slide of brain 
suspension of mouse infected with CSF of PAN 4107 harvested on day 14 
post Infection. The slide shows numerous tissue cysts with some clustered 
together.

 

Tissue cysts 

Figure 8: (X 40): Giemsa-stained slide of brain suspension of mouse infected 
with CSF of PAN 4104 harvested on day 7 Post Infection.  The slide shows 
numerous tissue cysts dispersed in brain suspension.

Tissue cysts containing 
dark staining bradyzoites 

Figure 9: (X 40): Giemsa-stained slide of brain suspension of mouse infected 
with blood of PAN 4107 harvested on day 7 post Infection. The slide shows a 
tissue cyst containing numerous dark staining bradyzoites.

 

Tissue cysts lodged 
in neuronal processes 

Figure 10: (Oil Immersion): Giemsa-stained slide of brain suspension of 
mouse infected with CSF of PAN 4092 harvested on day 14 post Infection. 
The slide shows tissue cysts lodged within neuronal processes.

 

Tissue cysts arranged in 
bead-like fashion within 
neuronal processes

Figure 11: (Oil Immersion): Giemsa-stained slide of brain suspension of 
mouse infected with CSF of PAN 4092 harvested on day 14 post Infection. 
The slide shows tissue cysts arranged in a bead-like fashion within neuronal 
processes.

Figure 12: Photograph of PAN 4104 showing bilateral ocular opacity noticed 
on day 21 post infection.

leukopenia. According to our knowledge, this could be the fi rst 
report of T. gondii-induced upregulation of erythropoiesis, in olive 
baboons, and is quite confounding. Similar perplexing increases 
in PCV, RBC and haemoglobin values have been reported in 
naturally T. gondii-infected cats [60,61] and experimentally infected 
gerbils [62]. Most studies generally report development of anemia 
characterized by low PCV %, Hgb concentration, and RBC counts 
[63,64]. Experimental murine studies have demonstrated anaemia 
as a key erythroid sequel of a variety of protozoal diseases including 
malaria [65,66] trypanosomiasis [67] and toxoplasmosis [68]. 
T.gondii-induced anemia has been attributed to depressive eff ects 
of pro-infl ammatory cytokines especially IL-6, IFNγ and TNF-α on 
erythroid precursor cells [69], and hemorrhage [68]. Th is study also 
reports a generalized leukopenia, neutropenia, lymphocytopenia and 
eosinopenia. Th e intravenous route of infection is akin to drastic 
bombardment of immune cells in the fi rst line of defense, which 
are themselves susceptible to parasite invasion and destruction. Th e 
ambush attack could have occasioned serious leukocyte casualties 
hence the sharp leukopenia on day 7 PI which was soon followed by a 
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Table 2: The pre-infection and post infection means and respective standard deviations (M, SD). Day 0 data is the pre-infection mean calculated from four weekly 
pre-infection values. DPI = Days Post Infection, n = number of baboons; ND, no data available.

Variable/DPI 0
n = 4

7
n = 4

14
n = 4

21
n = 4

28
n = 4

35
n = 4

42
n = 4

49
n = 4

56
n =3

63
n = 3

Body weight(kg)
12.52,
2.668 12.4,2.632 12.49,

2.429
12.73, 
2.450

12.75, 
2.512

12.95, 
2.645

13.04, 
2.375

13.06, 
2.460

12.73, 
3.252 ND

Body temp. (°C) 37.43,
0.567 37.8,0.340 38.13, 0.618 37.5, 

0.638
36.65, 
0.532

37.7,
0.391

36.73,
0.618

38.38,
0.075

37.67, 
0.208 ND

RBC count
(x 106/μl) 4.61, 0.179 4.65, 

0.176 4.80, 0.066 4.82, 
0.135 4.86, 0.102 4.92, 

0,217 4.88, 0.180 4.78, 0.155 4.89, 0.077 4.87, 0.180

PCV Relative % 38.0, 1.643 38.0, 
1.977 39.2, 0.818 39.2, 

1.037 39.3, 1.023 40.3, 
1.402 39.9, 0.813 38.9, 1.228 38.9, 0.832 38.7, 0.519

WBC count
(x 103/μl) 10.01, 1.081 6.15, 

0.640 7.8, 1.984 11.1, 
4.859 7.13, 1.244 7.18, 

1.876 8.43, 1.944 8.15, 2.020 7.13, 1.514 6.6, 1.708

Neutrophils
(x 103/μl) 4.01, 0.297 2.64, 

0.221 2.70, 0.970 4.19, 
1.208 3.34, 0.978 2.82, 

0.842 3.67, 0.889 3.18, 0.859 4.07, 1.296 3.61,
0.859

Neutrophils; Relative % 48.6,
16.8 43.2, 34.6 40.0 46.1 39.3 43.2 41.5 56.2 54.9

Lymphocytes
(x 103/μl) 5.34, 1.770 3.18, 

0.683 4.38, 1.216 5.48, 
2.783 3.28, 0.307 3.73, 

1.233 4.14, 1.152 4.21, 1.224 2.62, 0.423 2.67, 0.902

Lymphocytes
Relative % 45.2 51.3 56.3 48.2 46.5 51.2 48.7 51.3 37.6 40.4

Table 3: Paired t-test results comparing pre-treatment values for different physical, clinical and haematological variables during different Days Post Infection 
(DPI). (t (df) = t value, p - value). For statistical signifi cance, p < 0.05. ND, no data.

Variable/DPI 7 14 21 28 35 42 49 56 63

Body weight(kg) t(3) = 0.80, p 
= 0.480

t(3) = 0.27, p 
= 0.810

t(3) =-1.63, p 
= 0.20

t(3) = -2.48, p 
= 0.080

t(3) = -7.25, p 
= 0.005

t(3) = -3.2, p 
= 0.050

t(3) = -2.75, p 
= 0.070

t(2) = 3.84, p = 
0.060 ND

Body temp (°C) t(3) =0.36, p 
= 0.24

t(3) = 0.19, p 
= 0.24

t(3) =0.64, p 
= 0.77

t(3) = 0.53, p 
= 0.12

t(3) = 0.34, p 
= 0.47

t(3) = 0.52, p 
= 0.21

t(3) =0.07, p 
= 0.13

t(2) = 0.21, p = 
0.54 ND

RBC count
(x 106/μl)

t(3) = -1.1, p 
= 0.35

t(3) = -2.09, p 
= 0.13

t(3) = -2.1, p 
= 0.13

t(3) = -3.32, p 
= 0.04

t(3) = -3.41, p 
= 0.04

t(3) = -2.5, p 
= 0.09

t(3) = -1.54, p 
= 0.22

t(2) = -2.51, p = 
0.13

t(2) = -0.14, p 
= 0.9

PCV Relative % t(3) = -0.07, p 
= 0.95

t(3) = -2.22, p 
= 0.11

t(3) = -3.53, p 
= 0.04

t(3) = -3.32, p 
= 0.05

t(3) = -5.12, p 
= 0.01

t(3) = -3.4, p 
= 0.04

t(3) = -1.24, p 
= 0.30

t(2) = -2.9, p = 
0.10

t(2) = -0.7, p = 
0.56

WBC count(x 
103/μl)

t(3) = 7.03, 
p=0.006

t(3) = 4.68, p 
= 0.02

t(3) = -0.42, p 
= 0.71

t(3) = 5.46, p 
= 0.01

t(3) = 5.54, p 
= 0.01

t(3) = 1.79, p 
= 0.17

t(3) = 3.65, p 
= 0.04

t(2) = 9.99, p = 
0.01

t(2) = 4.70, p = 
0.04

Neutrophils (x 
103/ μl)

t(3) = 2.96, p 
= 0.090

t(3) = 2.06, p 
= 0.130

t(3) = -0.04, p 
= 0.970

t(3) = 0.93, p 
= 0.420

t(3) = 1.79, p 
= 0.170

t(3) = 0.68, p 
= 0.540

t(3) = -0.04, p 
= 0.970

t(2) = 0.37, p = 
0.74

t(2) = 1.31, p = 
0.28

Neutrophils 
Relative%

t(3) = 0.86, 
p=0.45

t(3) = 1.58, p 
= 0.21

t(3) = 0.60, p 
= 0.59

t(3) = 0.22, p 
= 0.84

t(3) = 0.92, p 
= 0.42

t(3) = 0.58, p 
= 0.600

t(3) = 0.65, p 
= 0.56

t(2) = -1.26, p = 
0.34

t(2) = -1.45, p 
= 0.28

Lymphocytes (x 
103/μl)

t(3) = 2.62, p 
= 0.12

t(3) = 0.34, p 
= 0.760

t(3) = -0.42, p 
= 0.70

t(3) = 1.36, p 
= 0.27

t(3) = 1.34, p 
= 0.27

t(3) = 0.56, p 
= 0.620

t(3) = 0.41, p 
= 0.71

t(2) = 2.89, p = 
0.10

t(2) = 3.04, p = 
0.09

Lymphocytes 
Relative %

t(3) = -0.97, p 
= 0.41

t(3) = -1.40, p 
= 0.26

t(3) = -0.24, p 
= 0.82

t(3) =  -0.16, 
p = 0.920

t(3) = -0.71, p 
= 0.53

t(3) = -0.39, p 
= 0.720

t(3) = -0.65, p 
= 0.56

t(2) = 1.20, p = 
0.35

t(2) = 1.29, p = 
0.33

homeostatic recovery. Similar leukocyte changes have been reported 
in T. gondii infected cats, dogs and humans [70,71]. Th e validity of 
our haematological fi ndings could however be reinforced by using a 
larger number of baboons in a similar experiment.

CONCLUSION
Th is study used a T. gondii isolate from free range chicken in 

Kenya. Th e results have demonstrated that the olive baboon develops 
an infection that mimics the human form of toxoplasmosis, during 
both latent toxoplasmosis and toxoplasmic encephalitis, providing 
an excellent animal model suitable for investigating the disease 
pathogenesis, pathophysiology and evaluation of candidate anti-T. 
gondii vaccines and therapeutics.
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