

American Journal of Pharmacology & Therapeutics

Research Article

Green Approach for the Synthesis of New 1,3-Oxazines - a

Ghufran T Sadeek¹, Mohammad S Al-jely² and Neim H Saleem¹

¹Chemistry Department, College of Education for Girls, Mosu University, Iraq ²Chemistry Department, College of Education for Girls, Mosul University, Mosul, Iraq

*Address for Correspondence: Mohammad S. Al-jely, Chemistry Department, College of Education of pure science, Mosu University, Iraq, E-mail: mohamadalajelee@ yahoo.com

Submitted: 06 December 2020; Approved: 24 December 2020; Published: 28 December 2020

Cite this article: Sadeek GT, Al-jely MS, Saleem NH. Green Approach for the Synthesis of New 1,3-Oxazines. Am J Pharmacol Ther. 2020 Dec 28;4(1): 025-029. doi: 10.37871/ajpt.id22

Copyright: © 2020 Sadeek GT, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Oxazine compounds was found to have versatile application in pharmacology and medicine now a days . Their utility and application as drug and co-drug have drew attention of chemist to find different ways for the synthesis of this important type of heterocyclic compounds. They are important not as pharm chemical compounds but also as synthetic intermediates for other chemical and medical compounds .Accordingly we tried to find green and friendly procedure for the synthesis of new oxazine compounds(S1,s) using grinding technique .The synthesized compounds were studied by spectral methods and are discussed.

Keywords: Green; Approach; Synthesis; New; Oxazines

INTRODUCTION

There are many strategies were found in the literature for the synthesis of 1,3- oxazine compounds some of them the condensation of 3-amino propanol with carboxylic acid derivatives using solvent free condition [1], from methyl amino salicylate reaction with amino acids [2]. From phenol, anilineand and formaldehyde [3]. Antharanilic acid or its derivatives as precursor. These reactions were reviewed by Ahmed El-Mekabaty [4]. Other routes were from phenols and aromatic aldehydes in methanolic ammonia, These compounds were studied by Sayaji and Pravina B. They screened the synthesized compounds against two types of gram positive and gram negative bacteria [5].

Other researchers have prepared the 1,3-oxazine compounds from the cyclization of chalcone compounds using fly ash and have studied their Anti-Oxidant and Anti-Inflammatory activity [6] Thirunarayanan et-al have investigate the synthesis of 1.3oxazine compounds from chalcones using solvent free protocol and studied their antimicrobial activities [7]. Sayaji et-al have reviewed miscellaneous methods for the green synthesis and the biological effects of 1,3- oxazines [8].

Chaitra G. and Rohini RM have studied the preparation of some 1,3- oxazne compounds from chalcone derivatives of pyridine and investigate these compounds as nti-Oxidant and Anti-Inflammatory agents [9] Vashundhra Sharma and his coworkers have synthesized some oxazine compounds and investigate their anti-cancer activity [10]. Dadmohammad et-al have synthesized 2-Aryl-4-Thioxo-4H-Naphtho[2,3-e] [1,3] Oxazine-5,10-Dione from the reaction of ammonium thiocyanate and aroyl chlorides with 2-hydroxy-1,4-naphthoquinone in the presence of catalytic amounts of N-methylimidazole under solvent-free condition and at Ambient temperature [11] in 2019 researchers have tested previously synthesized 3,4-dihydro-2H-1,4-benzoxazin-3-one derivatives to reveal their human DNA topoisomerase I inhibitory activities. The result of this study is the significant action and might serve novel constructs for future anticancer agent deigns [12]. Nabaweya et-al have reviewed one ,two and third steps of 3,4-Dihydro-2H-1,3benzoxazines through the one-pot Mannich reaction and studied their diverse biological activities [13] Resent study on the preparation and anticancer, antifungal activity evaluations of naphtha [1,2-e] [1,3] oxazines bearing an arylsulfonamide moiety a is the work of Seyed Gholamhossein et-al work [14].

American Journal of Pharmacology & Therapeutics 👌

According to the above pharmacological importance of oxazine compounds and in continuing our efforts for our drug discovery program [15-19] we have synthesized new series of oxazine compounds using eco and friendly protocol.

Experimental

Melting points were uncorrected using thermal SMP30 UK melting point apparatus. IR spectra were recorded using Alpha (ATR) instrument [1]. HNMR spectra were recorded using Varian Agilent 499.53MHZ instrument, DMSO as internal solvent. All chemical were supplied by sigma –Aldrich, BHD and Fluka companies.

General procedure for the synthesis of naphthaoxazine compounds ($_{\rm s_{1.6}})$

Formaldehyde (0.2 mol), zirconyl chloride (ZrOCl₂.8H₂O) (O.2 mol.), 1-naphthol, (0.1 mol) and aromatic amine (0.1mol).this mixture was grinded by porcelain mortar and pistel for 30 min.,after that dichloromethane (CH₂CL₂) was then added .The organic layer was then separated and washed twice with brine then with water .The organic layer was separated evaporation of the solvent by rotary

evaporator afforded a crude product which was recrystallized from minimum amount of methanol physical properties were shone in the following Table (1)

RESULTS AND DISCUSSION

N-Aryl 2,4H(1,2E)(1,3) naphthaoxazine compounds (s_{1-6})

The titled compounds were prepared following similar procedure [20] and were characterized by IR which showed the following main absorption bands (3043-3061) for C-H ,sharp bands at (1450-1616) for C=C aromatic while C-N appeared at (1208-1364),C-O-C (1042-1149), and other band were listed in Table (2)

Proton chemical shift are assigned according to carbon number of the aromatic rings as they are shown in the second column of the above Table 3.

It is worth to note here that these compounds will studied for their biological activities against certain organisms during our drug discovery program which showed significant results for other series of this project and will be published when completed.

Table 1: Physical properties of compounds (S _{1.6})									
Comp.	_	Molecular	M.Wt	M.P.	Yield	Color			
No.	- Ar.	Formula	gm/mol	(°C)	%				
						dark			
S,		$C_{18}H_{14}N_2O_3$	306	66-67	87	yellow			
S_2		C ₁₉ H ₁₆ N ₂ O ₃	320	159-160 dec	80	Light yellow			
S ₃		C ₂₂ H ₁₇ NO	311	79-80	77	purple			
S4		C ₁₈ H ₁₄ CINO	295	98-100	63	yellow			
S ₅		C ₁₈ H ₁₄ CINO	295	112-115	58	Light brown			
S ₆		C ₁₈ H ₁₄ BrNO	340	56-58	65	White			

6 American Journal of Pharmacology & Therapeutics

Table2: HNMR for two representative Compounds were shown										
Comp. No.	Ar.	IR v cm ⁻¹								
		C-H Ar.	C=C	C-N	C-O-C	Others				
			Ar.							
S ₁		3061	14,561,577	1310	11,081,127	N-O				
						sym / 1315				
						Assy / 1550				
S ₂		3052	14,501,617	1346	10,421,149	N-O				
						sym / 1278				
						Assy / 1522				
S ₃		3062	15,191,595	1208	10,651,127					
S4		3052	14,831,589	1312	10,711,120	C-Cl / 541				
S ₅		3043	14,561,604	1323	10,471,125	C-Cl / 552				
S ₆		3051	14,831,589	1312	10,711,120	C-Br / 542				

Page -0028

American Journal of Pharmacology & Therapeutics

ACKNOWLEDGMENTS

Authors would like to thank the Iraqi Ministry of Higher Education and Research for providing Ghufran Seedek Thanoon a Scholarship to do this work which is part of her thesis. Thanks also to the Chemistry Dept. Of

Education College for Girls for providing all the facilities to do this project.

REFERENCES

- 1. Taati MR, Mamaghani M, Mahmoodi NO, Ghmanifar. A Simple Access to the Synthesis of 5,6-Dihydro-4H-1,3-Oxazines Under Solvent-Free Conditions and Microwave Irradiation, Transactions C. Chemistry and Chemical Engineering. 2009;16(1):17-21 http://scientiairanica.sharif.edu/article_3205. html
- 2. Salman M. Synthesis and Antiplatelet of 2-(ethyl amino acid esters, Amino pyridyl 1,3-oxzine. J of Advances in chemistry. 2013;2,(2):91-96. https:// rajpub.com/index.php/jac/article/view/898
- 3. Zhang C, Deng Y, Zhang Y, Yang P, Yi Gu. Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline And formaldehyde. Chinese Chemical Letters. 2015;26:348-352. https://www.sciencedirect.com/science/article/abs/pii/S1001841714005026
- 4. Ahmed E. Chemistry of 4H-3,1-Benzoxazin-4-ones. International Journal of Modern Organic Chemistry. 2013;2(2):81-121.
- 5. Sayaji S. Didwagh B. Pravina Piste. Novel one pot Synthesis and Antimicrobial Activity of 6-chloro-2,4- diphenyl 3,4-dihydro-2H-1,3benzoxazine derivatives. International Journal of Chem Tech Research. 2013;5(5):2199-2203. https://www.researchgate.net/publication/274709137_ Novel_one_-pot_Synthesis_and_Antimicrobial_Activity_of_6-chloro-24diphenyl_34-dihydro-2H-13-benzoxazine_derivatives
- 6. Chaitra G, Rohini RM. Synthesis of 1,3-Oxazine derivative from Chalcone and Screening for their Anti-Oxidant and Anti-Inflammatory activity. International Research Journal of Pharmaceutical and Biosciences. 2018;4(6):19-27. https://iripbs.com/volumes/vol4/issue6/IRJPBS-4602.pdf
- 7. Thirunarayanan G, Sundararajan R, Arulkumaran R. Aryl Chalcones as Efficient Precursors for DerivingOxazine: Solvent-free Synthesis and Antimicrobial Activities of some Oxazine-2-amines. International Letters of Chemistry. Physics and Astronomy. 2013;23:82-97. https://www.scipress. com/ILCPA.23.82
- 8. Sayaji S, Didwagh, B. Pravina Piste. Green synthesis of thiazine and oxazine derivatives - a short review. International Journal of Pharmaceutical Sciences and Research. 2013;4(6):2045-2061. https://ijpsr.com/bft-article/greensynthesis-of-thiazine-and-oxazine-derivatives-a-short-review/?view=fulltext
- 9. Chaitra G, Rohini RM. Synthesis of 1,3-Oxazine derivative from Chalcone and Screening for their Anti-Oxidant and Anti-Inflammatory activity. International Research Journal of Pharmaceutical and Biosciences. 2018;4:19-27. https:// irjpbs.com/volumes/vol4/issue6/IRJPBS-4602.pdf

- 10. Sharma V, Jaiswal PK, Saran M, Yadav DK, Saloni, Mathur M, Swami AK, Misra S, Kim MH, Chaudhary S. Discovery of C-3 Tethered 2-oxo-benzo[1,4] oxazines as Potent Antioxidants: Bio-Inspired Based Design, Synthesis, Biological Evaluation, Cytotoxic, and in Silico Molecular Docking Studies. Front Chem. 2018 Mar 23;6:56. doi: 10.3389/fchem.2018.00056. PMID: 29629369; PMCID; PMC5876303.
- 11. Balouchzehi D, Hassanabadi A. Synthesis of 2-Aryl-4-Thioxo-4H-Naphtho[2,3-e] [1,3]Oxazine-5,10-Dione under Solvent-Free Conditions at Ambient Temperature. The Journal of the International Society for Polycyclic Aromatic Compounds. 2019. https://www.tandfonline.com/doi/abs/10.1080/1 0406638.2019.1625064
- 12. Foto E, Özen C, Zilifd F, Betül, Gülbaşİlkay T. Benzoxazines as new human topoisomerase I inhibitors and potential poisons. DARU Journal of Pharmaceutical Sciences. 200;2865-2873. https://link.springer.com/ article/10.1007/s40199-019-00315-x
- 13. Nabaweya S. 3,4-Dihydro-2H-1,3-benzoxazines and their oxo-derivatives chemistry and bioactivities. J Serb Chem Soc. 2019;83(0):1-36. https://www. shd-pub.org.rs/index.php/JSCS/article/view/6911/0
- 14. Mansouria S, Boei H. Synthesis of novel naphtho[1,2-e][1,3]oxazines bearing an arylsulfonamide moiety and their anticancer and antifungal activity evaluations. Arabian Journal of Chemistry. 2020;13(1):1273-82. https://www. sciencedirect.com/science/article/pii/S1878535217302034
- 15. Al-Ajely, Noori AM. Synthesis of New Oxazin Compounds Derived from Furfural, Chalcons and Schiff Bases. J of Pharmacology and clinical research. 2019:1(3):66-71. https://lupinepublishers.com/pharmacology-clinicalresearch-journal/fulltext/synthesis-of-new-oxazin-compounds-derived-fromfurfural-chalcons-and-schiff%20bases.ID.000113.php
- 16. Al-Ajely, Norri A. An Efficient and Solvent Free Synthesis of N-Aryl 2,3-Dihydro-4H naphtho-[2,1-e] 1,3-oxazines. Bio medical journal of scientific and technical research. 2020;29(3):22510-22516. https://ideas.repec.org/a/ abf/journl/v29y2020i3p22510-22516.html
- 17. Ghufran S, Al-Ajely, Neim H. New Approach for the Synthesis of Aryloxy 1,3-Oxazines. Journal of Material Sciences & Manufacturing Research. 2020;1(2):1-5. https://www.granthaalayahpublication.org/journals/index.php/ granthaalayah/article/view/IJRG20_B11_3890
- 18. Sadeek T, Ghufran, Al-Ajely, Neam H. Synthesis of Some Oxazine Compounds Derived from TDI and Schiff Bases. Acta Scientific medical sciences. 2020;4(9):20-28. https://isindexing.com/isi/paper_details. php?id=29273
- 19. Sadeek T. Ghufran. Al-Ajely, Neam H. Synthesis of some oxazine compounds derived from phenols & 8-hydroxy quinolone. Solid State Technology. 2020;63(5):3179-3190. http://solidstatetechnology.us/index. php/JSST/article/view/4294
- 20. Kategaonkar A, Sonar SS, Pokalwar R, Shingate BB, Kategaonkar AH. An Efficient Synthesis of 3,4-Dihydro-3-substituted-2H-naphtho[2,1-e][1,3] oxazine Derivatives Catalyzed by Zirconyl(IV) Chloride and Evaluation of Its Biological Activities. Bulletin of the Korean Chemical Society. 2010;(31):1657-1660. https://inis.iaea.org/search/search.aspx?orig g=RN:45050477