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INTRODUCTION
Th e use of the impedance (Heaviside) by the Planck method made 

it possible to eliminate false singularities arising in purely optical and 
purely electrodynamic models for describing plasma eff ects [1]. But, 
on the one hand, a careful analysis of the impedance showed that the 
electric oscillator gives incorrect values   of the measurable parameters 
when its attenuation is zero. On the other hand, the impedance of 
the electric oscillator is in direct agreement with those used by 
Planck when he introduced quantization by electromagnetic waves. 
Whereas the Schrödinger equation was built precisely on the basis of 
a mechanical harmonic oscillator. As a consequence, this equation, 
taken as the basis of Quantum Mechanics, only qualitatively describes 
the hydrogen atom and gives catastrophic discrepancies between 
calculations and experiment with increasing atomic mass [2]. And 
this is quite understandable, since Quantum Mechanics, as the 
name suggests, was initially built within the framework of purely 
mechanistic concepts.

Th e movement of an elementary Mechanical Oscillator (MO), 
excluding damping, is determined by the mass m  and stiff ness 
(coeffi  cient of elasticity)   of the spring

(1)
..

m =-      x x 
And it is customary to describe it as a purely harmonic dependence 

of the displacement coordinate x : 

    (2)= t      x t A Cos  

where 
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resT m
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    - is the resonant frequency, resT  - is the 

oscillation period, and A  – the oscillation amplitude. At the same 
time, in Quantum Mechanics, the total energy E  of the harmonic 
oscillator was used 
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which in the classical case are characterized by a single resonant 
frequency and the possibility of continuous variation of the amplitude 
A. Schrödinger’s rewriting of this very equation in operator form is 
used for quantization, which gives a discrete set of amplitudes and 
frequencies 
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Th e realization that purely mechanistic concepts were used led 
to the creation of Quantum NON-MECHANICS. But, although 
mechanical measurements are much coarser than electrical ones, the 
discovered feature of electrical resonance [1] raised the question of the 
accuracy of calculating the oscillations of an elementary mechanical 
generator. Th e question is very important. Both in connection with 
the widely used calculations of wave functions, which are not entirely 
correct on the basis of a mechanical oscillator, and in connection 
with the completely correct use of the mechanical oscillator model 
for the primary quantization of phonons (in contrast to the secondary 
quantization of phonons, which gives a qualitatively diff erent general 
picture of phonon branches, fundamentally which diff ers from the 
experimentally observed one [3]).

 Traditionally, almost since Newton’s time, the oscillations of a 
harmonic oscillator are described by a particular solution obtained by 
the method of separation of variables in a diff erential equation with 
the subsequent solution of the already obtained algebraic equation. 
Th e solution is, in principle, particular, but it qualitatively refl ects 
the main properties of the CMO. Th is simplifi ed solution was also 
used by me earlier in the analysis of forced oscillations of a harmonic 
oscillator [4]. For the transparency of the analysis, in the calculations, 
the frequency of the driving force and the damping frequency 
reduced to the resonance frequency were used, and the amplitude of 
the driving force reduced to the mass was taken equal to unity. By 
themselves, these assumptions do not violate the general nature of 
the reasoning and the conclusions obtained. But a rigorous solution 
to the harmonic oscillator equation with zero initial conditions: 
displacement and, either the velocity or acceleration at the initial 
moment of time are equal to zero, gives a general solution consisting 
of the interference of many harmonics. Including for the Ideal case, 
and at zero attenuation of the QMO, the total oscillation consists 
of the interference of two harmonics, each of which has its own 
frequency dependence of the oscillation amplitude
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 ABSTRACT
Before starting to eliminate the phenomenological error inherent in the foundations of Quantum Mechanics, its basic model of the 

Classical Mechanical Oscillator (CMO) was thoroughly analyzed. Within the framework of the complete solution of the CMO diff erential 
equation, the connection between its attenuation and the Heisenberg Uncertainty Principle is shown - an ideal, continuous QMO has non-
physical (unobservable) characteristics that change abruptly (become physical) upon introducing even an infi nitely small damping. It was 
shown that the quantum corrections used to take scattering into account simply compensate for the incompleteness of the Schrödinger 
equation. But besides this, it was revealed that the particular solution of the equation of oscillation of a mechanical oscillator, used since 
Newton’s time, does not take into account the excitation of its natural oscillations interfering with oscillations at the frequency of the 
driving force. This term, missed, but very signifi cant at high frequencies at low damping, is less than the inverse damping frequency at the 
recording time. Taking this term into account describes many mechanical and electrical “anomalies” as normal interference with resonant 
vibrations. 

Keywords: Mechanical model; Complete solution of the diff erential equation; Damping; Heisenberg uncertainty principle; Mechanical 
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Th e frequency of the harmonic described by the fi rst term of the 
complete solution without damping is strictly equal to the resonance 
frequency, and the frequency of the second harmonic is strictly equal 
to the oscillation frequency of the harmonic driving force. Th e total 
interference of these harmonics for a number of frequencies is shown 
in fi gure 1.

In this case, each harmonic has its own frequency dependence, 
moreover, the frequency dependence of the second harmonic 
completely coincides with the frequency dependence of the oscillation 
amplitude of a harmonic oscillator, obtained by the method of 
separation of variables (Figure 2) Th e red curve in fi gure 2 corresponds 
to the missed “anomalous” oscillations at the resonant frequency for 
an arbitrary frequency of the driving force, which, as can be seen from 
fi gure 2, have little eff ect on the total amplitude at low frequencies, 
but exceed the “normal” oscillations (at the frequency of the driving 
force - blue curve of dots) the greater, the higher the frequency of 
oscillations of the driving force. 

 Th e amplitude of the total oscillation strictly at the resonant 
frequency has the following time dependence and, naturally, tends 
to infi nity:

      (6)

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 Th e modulus of the amplitude of the total oscillation without 
damping (gray curve in fi gure 2) coincides with good accuracy with 
the sum of the moduli of the amplitudes of the harmonics (blue 

and red curves in fi gure 2) and with the time asymptotics of the 
magnitudes of the maxima of interference oscillations under the 
action of a harmonic driving force at diff erent frequencies (points in 
fi gure 2). And at frequencies of the driving force, diff erent from the 
resonant frequency, at infi nite times, the amplitude of oscillations is 
set to a fi nite value, both of the harmonics at the frequency of the 
driving force, and of a fi nite value of the amplitude of oscillations 
strictly at the resonance frequency. Moreover, purely resonant 
oscillations at frequencies below the resonant one make a small 
contribution to the total amplitude of oscillations, and at frequencies 
of the driving force above the resonant one, it is in the purely ideal 
case that they are decisive - oscillations at the resonant frequency 
are orders of magnitude larger than the oscillations at the frequency 
of the driving force. Th us, in the very property of an ideal oscillator 
there is a number of observed eff ects: the specifi city of the sounds of 
the violin, and the sound coloration of the voices of people, animals, 
birds, and a number of problems of sound and color rendering, and 
fl utter with an increase in the speed of the air fl ow past the aircraft , 
and the vibration of the propeller, and cavitation in a water fl ow, and, 
in principle, the photoelectric eff ect at photon energies greater than 
the bandgap of semiconductors used in the detector, and the problem 
of Fourier transform of signals (and all of the above - in the fi rst order, 
and not in the form of corrections for Mathieu anharmonicities [5].

 Taking into account the nonzero attenuation, the above equation 
(5) has the following form:

       Sin        (7)x t x t x t t      

Figure 1: A set of interferences of natural resonant oscillations of an ideal mechanical oscillator with oscillations of a set of frequencies of a harmonic driving 
force in the absence of damping.
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Its complete (without separation of variables) solution contains 
two terms, which are also determined by the natural resonance 
frequency and the frequency of harmonic oscillations
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Th e second term, in principle, corresponds to a particular algebraic 
solution, but only for the frequencies of the driving harmonic force, 
so that it does not contain any interference features:

 2 2
1 1Sin       (9)
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Th e resulting complete solution in the limit gives (in contrast to 
the particular) a rigorous mathematical transition to the solution of 
the equation without damping 5 when the damping tends to zero in 
it. But, as will be shown below, physically infi nitesimal attenuation 
leads to a transformation of the frequency dependence.

 Th is complete solution is also an interference oscillation, the 
maximum amplitude of which has a characteristic time-dependent 
(Figure 3 and Figure 4).

 As can be seen from the fi gures, in contrast to the ideal case, 
the interference of oscillations aft er reaching the asymptotics drops 
off  sharply in amplitude at times greater than the reciprocal damping 
frequency.

 So, measurement times less than the reciprocal damping 

Figure 2: Frequency dependences of the amplitudes of the oscillation harmonics of the Ideal mechanical oscillator (blue and red curves) and the interference 
amplitudes of these harmonics (gray curve).

Figure 3: Transient processes and reaching the asymptotic of the modulus of the amplitude of the total oscillations of the harmonic oscillator at times above the 
inverse damping frequency 2π/γ for diff erent frequencies of harmonic oscillations of the driving force Ω below the resonance frequency.
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frequency give a large addition near the resonant frequency, and 
for frequencies above the resonant frequency, a giant addition to 
the interference amplitude. And for the ideal case, when, one might 
say, the measurement time of a stationary process is infi nite, this 
additive is decisive. Whereas the introduction of damping leads, 
at computation/measurement times greater than the reciprocal 
damping frequency, to a sharp decrease in the contribution of the 
intrinsic resonance at the frequency of the driving force.

 Th us, the Heisenberg Uncertainty Principle simply takes into 
account the smallest allowable attenuation that was initially missed 
in the Schrödinger equation. And additional “quantum corrections” 

Figure 4: Transient processes and reaching the asymptotic of the modulus of the amplitude of the total oscillations of the harmonic oscillator at times above the 
inverse damping frequency 2π/γ for diff erent frequencies of harmonic oscillations of the driving force Ω above the resonance frequency.

Figure 5: Sharpening of the maximum at the resonance frequency due to natural resonance oscillations (the fi rst term of the complete solution of the equation 
for the elementary harmonic oscillator (dots show the measurements / calculations of the amplitude of the total oscillations when the measurement time tends 
to infi nity -10300 periods).

to attenuation in turbid media, which give a smaller green laser 
bandwidth [6-8], are apparently also determined by the fact that the 
attenuation is introduced “over” Schrödinger’s idealization - their 
nature is not taken into account in the classical model of the complete 
solutions for oscillator vibrations. And within the framework of the 
complete solution, taking into account the infl uence of damping 
manifests itself in the fi rst term, in the compression of the band of the 
natural resonance oscillations in the medium, while the second term, 
determined by the tuning of the resonator and, thereby, the tuning 
of the coherence frequency - the driving force, depends on damping 
much weaker (Figure 5).
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And so, the initially discovered non-physical (jump-like) 
divergence of the refl ection of the Ideal Electric Oscillator from the 
Real required a fundamental consideration of its attenuation - the 
vacuum impedance. A similar jump-like change with the introduction 
of an arbitrarily small non-zero damping is observed for the MO 
phase, which is eliminated taking into account the Heisenberg 
Uncertainty Principle, but gives reason to assume the presence of the 
Certainty Principle.
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