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INTRODUCTION
Heat Shock Proteins (HSPs) are chaperone proteins vital to the 

cell providing protection against a variety of cellular stressors, being 
their nomenclature derived from the discovery proteins responded to 
heat stress as well as their molecular size [1]. Th ese thermal proteins 
are involved in many processes to maintain cellular homeostasis, 
as they help newly synthesized proteins to adopt their correct 
conformation, restore the structural folding of deformed proteins, 
and act in the degradation of proteins with incorrect and irreversible 
folding. In addition, HSPs are also important in the regulation of 
caspase-dependent and -independent apoptotic pathways and in the 
modulation of the immune system, as they act in the formation of 
antibodies, the presentation of antigens and their recognition by T 
lymphocytes and natural cell killers [2].

HSPs are present in various cellular compartments such as the 
nucleus, cytosol, and endoplasmic reticulum, being the cytosolic 
the most abundant and expressed in cells, including the HSP90 
family [3]. However, much of these proteins are also found in the 
mitochondrial region (HSP60, HSP70 and TRAP -1), either as result 
of local production or formed in the cytoplasm and transported to 
mitochondria. Th ese organelles play an important role in the cells’ 
survival, as loss of mitochondrial function or integrity can activate 
various death pathways, leading to the release of apoptotic proteins in 
the cytoplasmic matrix [4,5]. 

Mortalin, belonging to HSP70 family, encoded by HSPA9 
and also called GRP75/PBP74, has been shown to possess unique 
functional properties in several subcellular loci, and its functional 
roles can be divided into two broad categories according to the 
subcellular localization. Th e fi rst one comprehends those that take 
place in the mitochondria, such as acting in the import of nuclear-
encoded, cytoplasmically delivered proteins, folding of nascent 
proteins, and protein degradation within the mitochondrion, as well 
as interaction with submitochondrial components. On the other 
hand, extramitochondrial functions are included in the second class, 
responsible for promoting interactivity with protein 53 (P53), growth 
factors, centrosomes, endoplasmic reticulum proteins immune 
system components and metabolic components [4,6,7]. 

Mortalin, considered the major mitochondrial chaperone 
in higher eukaryotes, presents a diff erent staining pattern in 
normal and immortalized cells. Studies show that it is involved in 
apoptosis and prevention of cell growth in malignant cells from 
several organs [8]. Th is specifi c HSP has recently been described 
as a sensor of neuronal stress, being a mitochondrial chaperone 
protein involved in the quality control of proteins imported into the 
mitochondria. It is thought to have numerous functions such as stress 
response, intracellular transport, antigen processing, control of cell 
proliferation, diff erentiation, and tumorigenesis [9,10]. 

Mortalin is translated in the cytosol and load into the 
mitochondria, being expressed in all cell types and tissues studied 
so far and is thought to perform several essential functions [11,13]. 
Currently investigations have improved the comprehension of its 
functionality from an involved protein in mitochondrial import, 
energy production, and chaperoning of misfolded proteins, to that 
of a sentinel of stress that has multiple binding partners, or even to a 
killer protein that contributes to the assistance of many diseases. It has 
proven to be an attractive target for cancer therapy and, also deserves 
attention from the perspective of age-related disease treatment and 
healthy aging [14]. 

Human mortalin has been successfully purifi ed and described by 
Luo, et al. [15] which provided its basic biochemical characterization, 
and the basis for future deepened biophysical and kinetic research of 
its function and its association to various human pathologies states. 
Leonard, et al. [16] found signs that mortalin is also responsible in 
mediating infl ammation and endothelial cell permeability associated 
with acute lung injury. Dores-Silva, et al. [17] demonstrated that 
this thermal protein tended to interact with membranes resembling 
the mitochondrial inner membrane, which may be relevant for 
its function in translocation of proteins into mitochondria. It has 
several binding partners, being related with various roles, such as 
stress response and control of cell proliferation to inhibition and/or 
prevention of apoptosis. 

Several structural and functional mechanisms are involved in 
the activity of this protein, and few changes in its expression levels 
could take to serious biological eff ects [18]. According to Wadhwa, 
et al. [11], some of the functions of mortalin, such as inactivation of 
P53, could be used as benefi cially to immortalize human cells in vitro 
or targeted for tumor therapy, targeting of other functions, such as, 
chaperonization, mitochondrial biogenesis and intracellular traffi  c.

HEAT SHOCK PROTEINS AS BIOMARKERS 
DISEASES AND THERAPEUTIC TARGETS 
HSP inhibitors

Th e overexpression of HSPs correlated with favoring the survival 
of tumor cells make these proteins a potential target for studies on 
new therapies in various types of malignant neoplasms, thus, HSP 
inhibitors have been proposed to be benefi cial to cancer treatments 
[2]. Th ese inhibitors, together with chemotherapy, could be used as 
chemo sensitizing agents, reducing the resistance of tumor cells to 
chemotherapy, increasing the eff ectiveness of action with lower doses. 
Several studies have used techniques that employ the use of siRNA, 
antisense oligonucleotides and small molecules to inhibit HSPs, both 
in vivo and in vitro [2].
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Inhibition studies focusing on HSP27, HSP90 and HSP70 proteins 
have had surprising results. In a murine orthotopic model, Hadaschik, 
et al. [19] found that the inhibition of HSP27 was concomitant with 
the reduction in the growth of human bladder cancer cell lines. It has 
also been shown that HSP27 inhibition can increase the sensitivity of 
tumor cell lines, making them more vulnerable to chemotherapy [20]. 

HSP90 has been selected for many studies of neoplastic biomarkers 
since the non-toxic levels of inhibitors of this protein have antitumor 
effi  cacy [21]. On the other hand, depending on the cell where it is 
expressed, the level of affi  nity of HSP90 with the inhibitor changes, 
suggesting that there is about a 100-fold greater binding strength 
between HSP90 and its inhibitor when expressed both in tumor cells 
and in normal cells. Th is can occur probably due to a change in the 
conformation of HSP90 expressed in tumor cells that causes a greater 
affi  nity to the inhibitor [2,21,22].

Regarding mortalin, inhibition of HSP70 expression was also 
correlated with reduced growth of human bladder neoplastic cells 
[23]. He, et al. [24] found that bladder cancer cells became more 
susceptible to Mitomycin C treatment when HSP70 expression 
was inhibited. Due to this potential, HSP inhibitors has being 
increasingly investigated through clinical trials to assess their safety 
and eff ectiveness as an anti-tumor therapeutic agent [20]. 

Given the fact that there are HSPs compartmentalized in 
mitochondria, these proteins are also possible targets for antitumor 
therapy based on the use of HSP inhibitors. As inhibitors examples, 
TRAP-1 is a protein with great potential as a target for anti-HSP 
therapy, having preferential expression in several tumor cells [25]. 
Shephardin and Gamitrinibs, a new class of small HSP90 inhibitor 
molecules projected to accumulate in mitochondria, have proven 
eff ective in inhibiting the activity of mitochondrial chaperones. 
Gaamitrinib, for example, accumulates in the mitochondria in all 
kinds of cells (normal and tumor) and inhibits ATP-ase action in 
TRAP-1, resulting in the breakdown of mitochondrial integrity. In 
an assessment of a preclinical model of prostate cancer, that inhibitor 
induced apoptosis both of androgen-dependent and nondependent 
cells, eliminating chemo-resistant prostate cancer cells. Furthermore, 
that eff ect occurred without any negative consequence on normal 
cells, and the inhibitory activity was specifi c for TRAP-1, without 
infl uencing the activity of HSP-90 [26]. In animal models of prostate 
cancer, Gamitrinib produced localized anticancer activity, that is, 
without providing systemic toxicity [27].

Neurological diseases

It is widely accepted that mitochondrial dysfunction and altered 
mitochondrial dynamics play an important role in the Parkinson’s 
Disease (PD) and Alzheimer’s Disease (AD) [28-30]. Th us, mortalin 
has been the subject of many studies related to these two important 
diseases [31-34].

Th e possible involvement of mortalin in the pathogenesis of 
PD was investigated in rats by Chiasserini, et al. [35] by means of 
an electrophysiological approach and pharmacological inhibition of 
mortalin in normal and parkinsonian states. Proteomic assays were 
utilized to evaluate the changes in striatal protein expression in the 
6-hydroxydo-pamine rat Parkinson model. Th e electrophysiological 
results of MKT -077 (an analog of rhodamine 123 that function as an 
inhibitor of HSP70) were evaluated by fi eld potential recordings from 
corticostriatal brain slices withdrawn from control sham-operated 
and 6-hydroxydopamine-denervated rats. Th e slices were also 

analyzed in the presence of rotenone, an inhibitor of mitochondrial 
complex I. Comparing rats treated with 6-hydroxydopa mines with 
sham operated animals, proteomic analysis showed downregulation 
of mortalin in striata from the animals. Th e amplitude of the 
corticostriatal fi eld potential under physiological conditions was 
reduced by MKT-077, thus induced membrane depolarization and 
internal currents in the striatal middle spiny neurons. Moreover, 
was concluded that MKT-077 caused signifi cant alterations in 
striatal slices from PD animals as well as in slices treated with a 
submaximal concentration of rotenone, in concentrations that did 
not elicit electrophysiological eff ects under physiological conditions, 
suggesting a crucial link between mortalin function and mitochondrial 
activity under both normal and pathological situations that mimic the 
parkinsonism. 

Wadhwa, et al. [36] showed that mutation of mortalin has 
been detected in some PD patients, where mutant mortalin lacked 
assignments related in combating oncogenesis and caused increased 
oxidative stress, concluding this mutation contribute to PD, showing 
for the fi rst time the mechanism and functional signifi cance of 
mortalin and its point mutations in controlling cell proliferation 
regarding to oncogenesis and premature aging.

Dysfunction of mortalin related with Parkinson enlarges the 
susceptibility of cultured cells to proteolytic stress, leading to alterations 
in the function and morphology of mitochondria. Zhu, et al. [37] 
produced the fi rst Drosophila model with loss of HSC70-5/mortalin 
function, and this decreasing in mortalin expression recapitulated 
some of the defects, such as reduced ATP levels, unnatural posture of 
wing, decreased lifespan, and decreased spontaneous locomotion and 
climbing ability. Dopaminergic neurons seem to be more sensitive 
to these losses than other neuronal subtypes and non-neuronal 
tissues. Later degenerative incident can be produced by loss of 
synaptic mitochondria, an early pathological alteration that precedes 
both behavioral abnormalities and structural alterations at the 
neuromuscular junction of mortalin-knockdown Drosophila larvae, 
which exhibit increased mitochondrial fragmentation. Parallel, 
autophagy is upregulated, indicating that mitochondria are degraded 
by mitophagy. Ex vivo data from human fi broblasts demonstrate that 
augmented mitophagy represents an early pathological alteration 
that precedes apoptosis. Th is model of mortalin loss can be helpful 
for further unraveling the complex network of signaling pathways 
underlying the development of mitochondrial parkinsonism.

Mortalin also plays an important role in decreasing the Lewy 
bodies toxicity, which are abnormal aggregates of proteins that form 
inside neurons in PD, dementia with Lewy bodies, and some other 
neurodegenerative diseases [38]. Previous experiments have reported 
that in PD, its levels are downregulated in neuroglial cells, and other 
brain tissue samples. Singh, et al. [38] have shown that mortalin 
in serum is signifi cantly associated with PD and can be a potential 
biomarker for this illness.

Cook, et al. [28] have reported that levels of this specifi c HPS have 
been lower in brain tissue from patients with these kinds of diseases, 
with expression shown to be lower in neurons from postmortem 
cerebrum samples. Th e expression of mortalin was detected in primary 
mouse astrocyte cultures by qPCR and confi rmed by Western blot. 
Experiments in human postmortem tissue using confocal microscopy 
showed that mortalin was localized in neuroglial cells. Using a 
quantitative immunofl uorescence staining technique, the protein has 
been moderately reduced in this cell type in Substantia Nigra Pars 
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Compacta (SNpc), but not in structures of the corpus striatum, in 
patients with PD compared with age- and sex-matched controls, 
highlighting the potential contribution of impaired astroglial function 
to the pathogenesis of PD. In summary, was demonstrated for the fi rst 
time the presence of mortalin in astrocytes from both healthy subjects 
and patients with PD. Compared to controls, astroglial mortalin is 
signifi cantly reduced in the SNpc of Parkinson’ patients. 

Ferré, et al. [9] observed that downregulation of mortalin led 
to mitochondrial fragmentation and axonal damage, whereas 
overexpression of mortalin protected against oxidative stress-
mediated axonal degeneration. Th is demonstrates that the amount 
of mortalin modulate mitochondrial morphology through a direct 
eff ect on DRP1 phosphorylation, emphasizing even more the critical 
importance of mitochondrial dynamics in neuronal fate in these 
kinds of neurological diseases.

Many other studies have also investigated the eff ect of mortalin in 
others neurological disorders, such as schizophrenia [39-42], cerebral 
ischemia [43-47], Friedreich’s ataxia [48,49], absence seizure [50,51], 
brain tumors [52], among others [53].

Endocrine diseases: diabetes

Diabetes is one of the fastest growing pathologies in the 
world, promoting devastating macrovascular and microvascular 
complications, such as cardiovascular disease, diabetic kidney disease, 
diabetic retinopathy, neuropathy, which can lead to blindness, renal 
failure, lower overall quality of life, and hence death.  Mortalin, 
through its activities in the infl ammatory process, mitochondrial 
function and ergastoplasm stress in many of the pathogenesis of 
insulin resistance, has promising potency as a therapeutic target in 
the control of type 2 diabetes mellitus [54].

Have been observed that HSP70-modulating interventions 
are apt to reduce blood glucose, recover lipid profi le, and improve 
insulin sensitivity [55]. Kavanagh, et al. [56], demonstrated that 
restore HSP70 defi ciencies improves glucose tolerance in diabetic 
monkeys, concluding that pharmacological inducement of HSP70 
using clinically expressive dosages of GGA also readily raised insulin 
sensitivity and glucose tolerance and provided important proof of 
concept related to the viability of HSP70-inducing strategies to the 
therapy of Diabetes Mellitus (DM).

Th e serum level of HSP70 correlates with disease duration 
is an important indicator, being signifi cantly higher in patients 
with diabetes. Th us, higher levels in chronic diabetes versus newly 
diagnosed diabetes may be a warning of metabolic disturbance in the 
progress of the pathology [57]. 

Hyperglycemia-associated HSP70, via the TLR4 pathway, plays an 
important role in the pathophysiology of diabetic vasculopathies and 
might be a new target for therapeutic intervention [58]. According to 
Amawi, et al. [59] expression of HSP70 can be meaningly associated 
with progression of diabetes and its vascular changes in the liver in 
induced diabetic animal model. 

In DM, mortalin was found to be over-produced in rat pancreas 
(responsible for insulin sovereignty) kept under continuous stressful 
conditions. Regular pancreatic insulin-secreting cells are likely to 
mimic pre-diabetes with prolonged exposure to the stressors. When 
these cells were exposed to infl ammation-facilitating compounds, 
was observed that there is a raise in secretion of mortalin protein, 
being associated with lesser survival and expedited ageing, suggesting 

a potential role of mortalin in the pathogenesis of diabetes. Th is 
HSP may also be associated to the atypical expression of other 
critical diabetic hormones, e.g., glucagon and C-peptide. It is worth 
emphasizing that while an increase in the overall concentration of 
mortalin is related to cancer, diabetes and other metabolic diseases, 
its gene inactivation and down-regulation have been linked to 
neurodegenerative disorders.  Although a few studies have revealed 
that mortalin has a direct correlation with the onset and progression 
of DM, more detailed investigations are warranted [60]. 

Immune diseases: Human Immunodefi ciency Virus (HIV-
1)

Human Immunodefi ciency Virus (HIV-1) infection, even in the 
presence of suppressive Antiretroviral Th erapy (ART), is identifi ed 
by a chronic infl ammatory state and varying degrees of immune 
dysfunction. Despite the success of combinatorial ART, this disease 
remains a major health challenge around the world, with a large 
number of cases still being reported [61]. In infection with this virus, 
the activation of neuroglia cells leads to an imbalance in physiological 
functions, as the impaired astrocytic functions promote toxicity 
in neurons. Th is takes to an infl ammatory reply that eventually 
culminates in neurocognitive dysfunction. 

In NeuroAIDS, HIV-1 protein, the Transactivator of Transcription 
(Tat), is found in the liquor of contaminated humans. Wadhwa, et al. 
[62] investigated the mechanisms of mortalin in modulating HIV-
1 Tat-mediated neuroinfl ammation and concluded that it plays a 
protective role in combating HIV-1 Tat-mediated damage. Th ey also 
demonstrated that mortalin can degrade Tat by directly binding to 
HIV-1 Tat. In the presence of Tat, overexpression of mortalin was 
able to reduce the cytotoxic sequels of Tat in astrocytes. Indirect 
neuronal death was also rescued. In vitro results were proven as 
they found attenuated expression of mortalin in autopsy sections 
from infected patients. In conclusion, was identifi ed a novel role for 
mortalin in astrocytes transfected with HIV-1 Tat. Mortalin binds 
to Tat in neuroglial cells, degrading it and making it unavailable for 
toxicity of cells. Th is rescued the cell from Tat-mediated deleterious 
eff ects on neuroglias cells and, also decreased indirect neuronal death, 
suggesting a therapeutic function for mortalin against HIV-1 Tat-
induced neuronal damage.

Recent studies have also reported a HSP70 expression inversely 
correlates with viral replication [63], indicating that this may play 
an important role in the progression and prevention of pathology 
manifestation.

Cancer

Neoplasms are a highly complex disorder that frequently consists 
of diverse cell populations with diff erent proliferative capacities, 
cell surface antigens and tumorigenic abilities, responding each one 
diff erently to each chemotherapeutic agent [6]. Since neoplastic 
cells live in a persistent state of proteotoxic stress, they rely on the 
subversion of HSPs to prevent the activation of the apoptosis process. 
Studies have shown that HSPs are critical for tumor resistance 
to chemotherapy or radiotherapy and are present in all phases 
of oncogenesis, such as diff erentiation, proliferation, apoptosis, 
angiogenesis, invasion, and metastasis [64]. 

In function of the participation of these proteins on mitochondrial 
key activities, they are considered also important targets in cancer 
research [3,4]. Mortalin is present in a several kinds of cancers, 
showing to contribute to carcinogenesis in many ways, including 
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deregulation of apoptosis, deactivation of the tumor suppressor 
protein p53, and activation of EMT (Epithelial-mesenchymal 
transition) signaling [6,65-69]. 

Presupposes that mortalin is associated with resistance of the cells 
to oxidative stress [70], and has been also associated with proliferation, 
aggressiveness and chemoresistance of other neoplasms and has also 
been implicated in the mechanisms of cellular resistance to oxidative 
stress [8,71-74]. Inhibition of HSP70 transcription has been shown 
to cause massive death of breast, colon, prostate, and liver tumor cell 
lines, but not non-tumor cells [75].

Münster, et al. [76] demonstrated that the use of the drug 17-
AAG, an HSP90 inhibitor, resulted in a decrease in proliferation of 
breast cancer cells by interfering with the G1 phase of the cell cycle 
and causing apoptosis of tumor cells. Th us, the strong association 
of HSPs with carcinogenesis served as a pretext to study them as 
biomarkers and targets for antineoplastic therapies [2]. 

Although HSPs are expressed at all levels in normal urothelium, 
several studies have associated high expression of some of these 
proteins with bladder cancer. It has also been observed that the 
expression of HSP70 family proteins such as HSP70-2 is associated to 
the phase and grade of bladder tumor [2]. In addition, Garg, et al. [77] 
showed that HSP70-2 is expressed in 72 to 88% of urothelial tumors 
but is not normally found in the urothelium. 

Yun, et al. [6] reported that upregulation of mortalin collaborates 
to cancer cell stemness. Some markers of cancer cell stemness were 
upregulated in mortalin overexpressing cells that demonstrated higher 
spheroid formation ability. Th ese cells also exhibited higher migration 
and were less responsive to a range of cancer chemotherapeutic 
agents. It is worth emphasizing that knockdown of mortalin by 
specifi c shRNA sensitized these cells to all compounds managed in 
this experiment. Researchers reported that low doses of anti-mortalin 
molecules, such as MKT -077 and CAPE, also promote suchlike 
sensitization of cancer cells to chemotherapeutic agents, becoming 
them potential applicants for eff ective cancer chemotherapy. 
Was demonstrated that mortalin executes a fundamental role in 
mitochondrial biogenesis [78]. It has been identifi ed as the sole 
ATPase unit of the mitochondrial import complex, which is essential 
for the translocation of most mitochondrial inner membrane and 
matrix proteins. It binds to Tim44 (inner mitochondrial membrane 
translocase) and serves as an ATP-driven motor to generate force 
during protein import [79,81]. According to Starenki, et al. [82] 
the eff ects caused by the mortalin depletion was mitochondrial 
bioenergetics alteration, depolarization of mitochondrial membrane, 
decreasing of oxygen absorption and extracellular acidifi cation, and 
raising of oxidative stress in medullary thyroid carcinoma cells. Yun, 
et al. [6] previously demonstrated expression of retrovirally expressed 
mortalin in mitochondria, and therefore, the mitochondrial functions 
of upregulated mortalin may help to increased metabolic demand 
related with increased proliferative capacity of cancer stem cells G 
[70]. 

Cholangiocarcinoma (CC), a malignant cancer that appear from 
the epithelial cells of the bile ducts, is the second most common 
primary liver cancer around the world [83]. Li, et al. [84] reported 
that mortalin is involved in the TGR5-induced increase in CC cell 
proliferation, being a downstream component regulated by TGR5, 
which provides CC at least in part by interacting with mortalin and 
upregulating its expression, showing that both TGR5 and mortalin 
are positive regulators, serving as potential biomarkers for this type 
of carcinoma.

Studying the expression of mortalin in colorectal cancer, Xu, et al. 
[85] showed that high mortalin expression is positively associated with 
poor overall survival. Overall, mortalin is quite expressed in colorectal 
cancer and may represent bad prognosis. Mortalin accelerated cancer 
development by stimulating cell proliferation and the epithelial-
mesenchymal transition program. Comparative proteomic assays 
show overexpression of mortalin in colorectal adenocarcinomas. By 
immunostaining on a colorectal cancer tissue microarray connected 
to a patient database, it was reported that overexpression of mortalin 
correlated with low patient survival. Results demonstrated that 
mortalin overexpression can predict colorectal cancer outcome, 
showing that this thermal protein is involved in colorectal cancer 
[69].

In hepatocellular carcinoma, the main hindrance to the treatment 
of advanced or recurrent cancer are angiogenesis and sorafenib 
resistance. Yang, et al. [86] demonstrated that mortalin, which 
stipulate the phosphorylated alterations of the cancer-associated 
proteome, induce angiogenesis and sorafenib resistance, being a 
competing risk coeffi  cient in this type of carcinoma.

In brain tumors, a raise in the number of mortalin-positive 
cells with malignant progress of brain tumors and their correlation 
with Ki-67 (a cell proliferation marker)-positive cells showed the 
involvement of non-pancytosolic mortalin in the malignant mutation 
of cells in vivo [52].

Regarding bladder cancer, there are many studies linking HP70 
family overexpression to the expansion and survival of the tumor cells. 
Targeting the diff erent Hsp70 protein isoforms with siRNA or other 
drugs resulted in tumor growth inhibition and chemosensitization of 
bladder tumor cells [2,87]. Th e expression of Hsp70 has been related 
not only with cancer cell proliferation and survival, but also with 
tumor grade and potential therapeutic outcomes [73-74]. 

Pagliarone, et al. [88] tested whether inhibition of its activity 
would directly aff ect the viability of MB49 cells. Th erefore, these cells 
were cultured for 48 h in the presence or absence of the inhibitor 
MKT -077 at diff erent concentrations and, 48 h aft er culturing in the 
absence of the inhibitor, were subjected to a viability assay. According 
to the data obtained, the authors found that MKT -077 signifi cantly 
decreased tumor cell viability in a dose-dependent manner mainly 
under oxidative stress conditions.

In myeloid leukemia and myelodysplasia, the Human 
chromosome 5q31.1 segment is oft en deleted, indicating that 
mortalin may be an applicant gene involved [89]. Many other similar 
studies have also been conducted with other tumor and cancer, such 
as ovarian cancer [90], lung cancer [91], KRAS tumor cell [92], with 
similar results, always considering mortalin as a target in the support 
for these pathologies. 

CONCLUSION
Mortalin can be an important tool as a disease biomarker, 

therapeutic target, and therapeutic agent, assisting in the diagnosis 
and treatment of various diseases. Th is review presented the potential 
of mortalin in face of the challenges in the treatment of neurological, 
endocrine, immunological diseases, and cancers, however, further 
studies should be conducted to elucidate its complete mechanism 
within cells. With the recent advances in the biotechnology fi eld, 
vaccine or antibody treatment based on mortalin will surely be a very 
important tool.
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